Answer :
To determine which Trail Mix is the best buy, we need to compare the cost per ounce for each type of Trail Mix.
First, we need to convert the weight of each Trail Mix into ounces (oz), as the table provides the weight in different units.
1. Trail Mix A:
- Cost: [tex]$6 - Weight: \( \frac{3}{4} \) lb - Since \( 1 \) lb = \( 16 \) oz, \( \frac{3}{4} \) lb = \( \frac{3}{4} \times 16 \) oz = \( 12 \) oz 2. Trail Mix B: - Cost: $[/tex]8.50
- Weight: [tex]\( 1 \)[/tex] lb
- Since [tex]\( 1 \)[/tex] lb = [tex]\( 16 \)[/tex] oz, it directly translates to [tex]\( 16 \)[/tex] oz
3. Trail Mix C:
- Cost: [tex]$2.25 - Weight: \( 402 \) oz Next, calculate the cost per ounce for each Trail Mix: 1. Cost per ounce of Trail Mix A: - Cost: $[/tex]6
- Weight: [tex]\( 12 \)[/tex] oz
- Cost per ounce = [tex]\( \frac{6}{12} \)[/tex] = [tex]\( 0.5 \)[/tex] dollars per ounce
2. Cost per ounce of Trail Mix B:
- Cost: [tex]$8.50 - Weight: \( 16 \) oz - Cost per ounce = \( \frac{8.50}{16} \) = \( 0.53125 \) dollars per ounce 3. Cost per ounce of Trail Mix C: - Cost: $[/tex]2.25
- Weight: [tex]\( 402 \)[/tex] oz
- Cost per ounce = [tex]\( \frac{2.25}{402} \)[/tex] = [tex]\( 0.005597014925373134 \)[/tex] dollars per ounce
Finally, compare the cost per ounce among Trail Mix A, B, and C.
- Trail Mix A: [tex]$0.5 per ounce - Trail Mix B: $[/tex]0.53125 per ounce
- Trail Mix C: $0.005597014925373134 per ounce
From the calculations, Trail Mix C has the lowest cost per ounce.
Thus, the correct statement is:
C Trail Mix C is the best buy.
First, we need to convert the weight of each Trail Mix into ounces (oz), as the table provides the weight in different units.
1. Trail Mix A:
- Cost: [tex]$6 - Weight: \( \frac{3}{4} \) lb - Since \( 1 \) lb = \( 16 \) oz, \( \frac{3}{4} \) lb = \( \frac{3}{4} \times 16 \) oz = \( 12 \) oz 2. Trail Mix B: - Cost: $[/tex]8.50
- Weight: [tex]\( 1 \)[/tex] lb
- Since [tex]\( 1 \)[/tex] lb = [tex]\( 16 \)[/tex] oz, it directly translates to [tex]\( 16 \)[/tex] oz
3. Trail Mix C:
- Cost: [tex]$2.25 - Weight: \( 402 \) oz Next, calculate the cost per ounce for each Trail Mix: 1. Cost per ounce of Trail Mix A: - Cost: $[/tex]6
- Weight: [tex]\( 12 \)[/tex] oz
- Cost per ounce = [tex]\( \frac{6}{12} \)[/tex] = [tex]\( 0.5 \)[/tex] dollars per ounce
2. Cost per ounce of Trail Mix B:
- Cost: [tex]$8.50 - Weight: \( 16 \) oz - Cost per ounce = \( \frac{8.50}{16} \) = \( 0.53125 \) dollars per ounce 3. Cost per ounce of Trail Mix C: - Cost: $[/tex]2.25
- Weight: [tex]\( 402 \)[/tex] oz
- Cost per ounce = [tex]\( \frac{2.25}{402} \)[/tex] = [tex]\( 0.005597014925373134 \)[/tex] dollars per ounce
Finally, compare the cost per ounce among Trail Mix A, B, and C.
- Trail Mix A: [tex]$0.5 per ounce - Trail Mix B: $[/tex]0.53125 per ounce
- Trail Mix C: $0.005597014925373134 per ounce
From the calculations, Trail Mix C has the lowest cost per ounce.
Thus, the correct statement is:
C Trail Mix C is the best buy.