A grocery store sells different types of trail mix, as shown in the table below.

\begin{tabular}{|l|c|c|c|}
\hline
& Trail Mix A & Trail Mix B & Trail Mix C \\
\hline
Cost (\[tex]$) & 6 & 8.50 & 2.25 \\
\hline
Weight & $[/tex]\frac{3}{4}[tex]$ lb & 1 lb & 40 oz \\
\hline
\end{tabular}

$[/tex]1[tex]$ lb $[/tex]= 16$ oz

Which statement is correct?

A. Trail Mix A is the best buy.

B. Trail Mix B is the best buy.

C. Trail Mix C is the best buy.

D. They are all the same price.



Answer :

To determine which Trail Mix is the best buy, we need to compare the cost per ounce for each type of Trail Mix.

First, we need to convert the weight of each Trail Mix into ounces (oz), as the table provides the weight in different units.

1. Trail Mix A:
- Cost: [tex]$6 - Weight: \( \frac{3}{4} \) lb - Since \( 1 \) lb = \( 16 \) oz, \( \frac{3}{4} \) lb = \( \frac{3}{4} \times 16 \) oz = \( 12 \) oz 2. Trail Mix B: - Cost: $[/tex]8.50
- Weight: [tex]\( 1 \)[/tex] lb
- Since [tex]\( 1 \)[/tex] lb = [tex]\( 16 \)[/tex] oz, it directly translates to [tex]\( 16 \)[/tex] oz

3. Trail Mix C:
- Cost: [tex]$2.25 - Weight: \( 402 \) oz Next, calculate the cost per ounce for each Trail Mix: 1. Cost per ounce of Trail Mix A: - Cost: $[/tex]6
- Weight: [tex]\( 12 \)[/tex] oz
- Cost per ounce = [tex]\( \frac{6}{12} \)[/tex] = [tex]\( 0.5 \)[/tex] dollars per ounce

2. Cost per ounce of Trail Mix B:
- Cost: [tex]$8.50 - Weight: \( 16 \) oz - Cost per ounce = \( \frac{8.50}{16} \) = \( 0.53125 \) dollars per ounce 3. Cost per ounce of Trail Mix C: - Cost: $[/tex]2.25
- Weight: [tex]\( 402 \)[/tex] oz
- Cost per ounce = [tex]\( \frac{2.25}{402} \)[/tex] = [tex]\( 0.005597014925373134 \)[/tex] dollars per ounce

Finally, compare the cost per ounce among Trail Mix A, B, and C.

- Trail Mix A: [tex]$0.5 per ounce - Trail Mix B: $[/tex]0.53125 per ounce
- Trail Mix C: $0.005597014925373134 per ounce

From the calculations, Trail Mix C has the lowest cost per ounce.

Thus, the correct statement is:
C Trail Mix C is the best buy.