What is the solution of [tex]\sqrt{2x-3}+4=7[/tex]?

A. [tex]x=0[/tex]

B. [tex]x=6[/tex]

C. [tex]x=18[/tex]

D. No solution



Answer :

To solve the equation [tex]\(\sqrt{2x - 3} + 4 = 7\)[/tex], follow these steps:

1. Isolate the square root term:
We start by isolating [tex]\(\sqrt{2x - 3}\)[/tex] on one side of the equation.

[tex]\[ \sqrt{2x - 3} + 4 = 7 \][/tex]

Subtract 4 from both sides:

[tex]\[ \sqrt{2x - 3} = 3 \][/tex]

2. Eliminate the square root:
Square both sides of the equation to remove the square root.

[tex]\[ (\sqrt{2x - 3})^2 = 3^2 \][/tex]

This simplifies to:

[tex]\[ 2x - 3 = 9 \][/tex]

3. Solve for [tex]\(x\)[/tex]:
Rearrange the equation to solve for [tex]\(x\)[/tex].

[tex]\[ 2x - 3 = 9 \][/tex]

Add 3 to both sides:

[tex]\[ 2x = 12 \][/tex]

Divide by 2:

[tex]\[ x = 6 \][/tex]

4. Verify the solution:
Substitute [tex]\(x = 6\)[/tex] back into the original equation to ensure it is correct.

[tex]\[ \sqrt{2 \cdot 6 - 3} + 4 = 7 \][/tex]

Simplify inside the square root:

[tex]\[ \sqrt{12 - 3} + 4 = 7 \][/tex]

[tex]\[ \sqrt{9} + 4 = 7 \][/tex]

[tex]\[ 3 + 4 = 7 \][/tex]

[tex]\[ 7 = 7 \][/tex]

The left-hand side equals the right-hand side, confirming that [tex]\(x = 6\)[/tex] is indeed a solution.

So, the solution to the equation [tex]\(\sqrt{2x - 3} + 4 = 7\)[/tex] is [tex]\(x = 6\)[/tex]. Therefore, the correct answer is:

[tex]\[ x = 6 \][/tex]