Answered

[tex]\[ f(2 \pi) = \sin(2 \pi) \][/tex]

[tex]\[
\begin{array}{|c|c|}
\hline
x & f(x) \\
\hline
0 & 0 \\
\hline
\pi / 6 & 0.5 \\
\hline
\pi / 3 & 0.86 \\
\hline
\pi / 2 & 1 \\
\hline
2\pi / 3 & 0.86 \\
\hline
5\pi / 6 & 0.5 \\
\hline
\pi & 0 \\
\hline
7\pi / 6 & -0.5 \\
\hline
4\pi / 3 & -0.86 \\
\hline
3\pi / 2 & -1 \\
\hline
5\pi / 3 & -0.86 \\
\hline
11\pi / 6 & -0.5 \\
\hline
2\pi & 0 \\
\hline
\end{array}
\][/tex]



Answer :

To solve the problem of finding the value of [tex]\( f(2\pi) \)[/tex] given that [tex]\( f(x) = \sin(x) \)[/tex], we will proceed step-by-step:

1. Understanding the problem:
- We are given a function [tex]\( f(x) \)[/tex] which is defined as [tex]\( f(x) = \sin(x) \)[/tex].
- We need to find [tex]\( f(2\pi) \)[/tex], which translates to finding the value of [tex]\( \sin(2\pi) \)[/tex].

2. Applying the definition of the sine function:
- The sine function is periodic with a period of [tex]\( 2\pi \)[/tex]. This means that [tex]\( \sin(2\pi) \)[/tex] will have the same value as [tex]\( \sin(0) \)[/tex].
- We know from the properties of the sine function that [tex]\(\sin(0) = 0\)[/tex].

3. Conclusion:
- Therefore, [tex]\( f(2\pi) = \sin(2\pi) \)[/tex] is equal to [tex]\( \sin(0) \)[/tex], which is [tex]\( 0 \)[/tex].

So, the value of [tex]\( f(2\pi) \)[/tex] is [tex]\( 0 \)[/tex].

Other Questions