Answer :
To solve the system of equations:
[tex]\[ \begin{aligned} -3x + 6y &= 9 \quad \text{(Equation 1)} \\ 5x + 7y &= -49 \quad \text{(Equation 2)} \end{aligned} \][/tex]
we can use the method of elimination or substitution. Here, I'll demonstrate using the substitution method.
1. Solve one of the equations for one variable:
Let's solve Equation 1 for [tex]\(x\)[/tex]:
[tex]\[ -3x + 6y = 9 \][/tex]
Divide both sides by 3:
[tex]\[ -x + 2y = 3 \][/tex]
Rearrange to solve for [tex]\(x\)[/tex]:
[tex]\[ x = 2y - 3 \quad \text{(Equation 3)} \][/tex]
2. Substitute the expression for [tex]\(x\)[/tex] in the second equation:
Substitute Equation 3 into Equation 2:
[tex]\[ 5(2y - 3) + 7y = -49 \][/tex]
Expand and simplify:
[tex]\[ 10y - 15 + 7y = -49 \][/tex]
Combine like terms:
[tex]\[ 17y - 15 = -49 \][/tex]
Add 15 to both sides:
[tex]\[ 17y = -34 \][/tex]
Solve for [tex]\(y\)[/tex]:
[tex]\[ y = -2 \][/tex]
3. Substitute [tex]\(y = -2\)[/tex] back into the expression we found for [tex]\(x\)[/tex]:
Substitute [tex]\(y = -2\)[/tex] into Equation 3:
[tex]\[ x = 2(-2) - 3 \][/tex]
Simplify:
[tex]\[ x = -4 - 3 \][/tex]
[tex]\[ x = -7 \][/tex]
Therefore, the solution to the system of equations is:
[tex]\[ (x, y) = (-7, -2) \][/tex]
The correct answer is:
[tex]\[ \boxed{(-7, -2)} \][/tex]
[tex]\[ \begin{aligned} -3x + 6y &= 9 \quad \text{(Equation 1)} \\ 5x + 7y &= -49 \quad \text{(Equation 2)} \end{aligned} \][/tex]
we can use the method of elimination or substitution. Here, I'll demonstrate using the substitution method.
1. Solve one of the equations for one variable:
Let's solve Equation 1 for [tex]\(x\)[/tex]:
[tex]\[ -3x + 6y = 9 \][/tex]
Divide both sides by 3:
[tex]\[ -x + 2y = 3 \][/tex]
Rearrange to solve for [tex]\(x\)[/tex]:
[tex]\[ x = 2y - 3 \quad \text{(Equation 3)} \][/tex]
2. Substitute the expression for [tex]\(x\)[/tex] in the second equation:
Substitute Equation 3 into Equation 2:
[tex]\[ 5(2y - 3) + 7y = -49 \][/tex]
Expand and simplify:
[tex]\[ 10y - 15 + 7y = -49 \][/tex]
Combine like terms:
[tex]\[ 17y - 15 = -49 \][/tex]
Add 15 to both sides:
[tex]\[ 17y = -34 \][/tex]
Solve for [tex]\(y\)[/tex]:
[tex]\[ y = -2 \][/tex]
3. Substitute [tex]\(y = -2\)[/tex] back into the expression we found for [tex]\(x\)[/tex]:
Substitute [tex]\(y = -2\)[/tex] into Equation 3:
[tex]\[ x = 2(-2) - 3 \][/tex]
Simplify:
[tex]\[ x = -4 - 3 \][/tex]
[tex]\[ x = -7 \][/tex]
Therefore, the solution to the system of equations is:
[tex]\[ (x, y) = (-7, -2) \][/tex]
The correct answer is:
[tex]\[ \boxed{(-7, -2)} \][/tex]