Solve the system of equations given below.

[tex]\[
\begin{array}{l}
-5x = y - 5 \\
-2y = -x - 21
\end{array}
\][/tex]

A. [tex]$(-1,10)$[/tex]
B. [tex]$(10,-45)$[/tex]
C. [tex]$(-1,-23)$[/tex]
D. [tex]$(10,16)$[/tex]



Answer :

Let's solve the system of equations step-by-step.

The given system of equations is:
[tex]\[ \begin{array}{l} -5x = y - 5 \quad \text{(1)} \\ -2y = -x - 21 \quad \text{(2)} \end{array} \][/tex]

First, we'll solve Equation (1) for [tex]\( y \)[/tex]:

[tex]\[ -5x = y - 5 \][/tex]
[tex]\[ -5x + 5 = y \][/tex]
[tex]\[ y = -5x + 5 \quad \text{(3)} \][/tex]

Now, we substitute Equation (3) into Equation (2):

[tex]\[ -2(-5x + 5) = -x - 21 \][/tex]
Simplify inside the parentheses:

[tex]\[ -2(-5x) + (-2 \cdot 5) = -x - 21 \][/tex]
[tex]\[ 10x - 10 = -x - 21 \][/tex]

Next, combine like terms:

[tex]\[ 10x + x = -21 + 10 \][/tex]
[tex]\[ 11x = -11 \][/tex]
[tex]\[ x = -1 \quad \text{(4)} \][/tex]

Now that we have [tex]\( x \)[/tex], substitute [tex]\( x = -1 \)[/tex] back into Equation (3) to solve for [tex]\( y \)[/tex]:

[tex]\[ y = -5(-1) + 5 \][/tex]
[tex]\[ y = 5 + 5 \][/tex]
[tex]\[ y = 10 \quad \text{(5)} \][/tex]

Therefore, the solution to the system of equations is:

[tex]\[ (x, y) = (-1, 10) \][/tex]

So, the correct answer is:
A. [tex]\((-1, 10)\)[/tex]