Drag the tiles to the correct boxes to complete the pairs.

Match each system of linear equations with the correct number of solutions.

1. No solution
2. One solution
3. Infinitely many solutions

[tex]
\begin{aligned}
3x - y &= 4 \\
6x - 2y &= 8
\end{aligned}
\rightarrow \square
[/tex]

[tex]
\begin{aligned}
y &= -4x - 5 \\
y &= -4x + 1
\end{aligned}
\rightarrow \square
[/tex]

[tex]
\begin{aligned}
-3x + y &= 7 \\
2x - 4y &= -8
\end{aligned}
\rightarrow \square
[/tex]



Answer :

Certainly! Let's analyze each system of equations and match them with the correct number of solutions:

1. System of equations:
[tex]\[ \begin{cases} 3x - y = 4 \\ 6x - 2y = 8 \end{cases} \][/tex]

This system has infinitely many solutions. The second equation is simply a multiple of the first equation. Hence, both equations are essentially the same line, indicating that every point on the line is a solution.

2. System of equations:
[tex]\[ \begin{cases} y = -4x - 5 \\ y = -4x + 1 \end{cases} \][/tex]

This system has no solution. The two equations represent parallel lines with different y-intercepts. Parallel lines do not intersect, hence there are no solutions.

3. System of equations:
[tex]\[ \begin{cases} -3x + y = 7 \\ 2x - 4y = -8 \end{cases} \][/tex]

This system has one solution. The equations represent two lines that intersect at exactly one point. Such systems have a unique solution.

So we can complete the pairs as follows:

- Infinitely many solutions:
[tex]\[ \begin{cases} 3x - y = 4 \\ 6x - 2y = 8 \end{cases} \][/tex]

- No solution:
[tex]\[ \begin{cases} y = -4x - 5 \\ y = -4x + 1 \end{cases} \][/tex]

- One solution:
[tex]\[ \begin{cases} -3x + y = 7 \\ 2x - 4y = -8 \end{cases} \][/tex]

So, the filled boxes should look like this:

Infinitely many solutions:
[tex]\[ \begin{cases} 3x - y = 4 \\ 6x - 2y = 8 \end{cases} \][/tex]

No solution:
[tex]\[ \begin{cases} y = -4x - 5 \\ y = -4x + 1 \end{cases} \][/tex]

One solution:
[tex]\[ \begin{cases} -3x + y = 7 \\ 2x - 4y = -8 \end{cases} \][/tex]