Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar.

Complete the table of inputs and outputs for the given function.

[tex]\[ g(x) = 3 - 8x \][/tex]

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$g(x)$[/tex] \\
\hline
[tex]$\square$[/tex] & 0 \\
\hline
0 & [tex]$\square$[/tex] \\
\hline
[tex]$\square$[/tex] & -5 \\
\hline
3 & [tex]$\square$[/tex] \\
\hline
\end{tabular}



Answer :

To complete the table for the function [tex]\( g(x) = 3 - 8x \)[/tex], we need to find the corresponding inputs and outputs. Here's how we do it step-by-step:

1. Find [tex]\( x \)[/tex] such that [tex]\( g(x) = 0 \)[/tex]:

[tex]\[ g(x) = 0 \implies 3 - 8x = 0 \implies 8x = 3 \implies x = \frac{3}{8} \][/tex]

So, for [tex]\( g(x) = 0 \)[/tex], [tex]\( x \)[/tex] is:

[tex]\[ \boxed{\frac{3}{8}} \][/tex]

2. Find [tex]\( g(0) \)[/tex]:

[tex]\[ g(0) = 3 - 8 \cdot 0 = 3 \][/tex]

So, for [tex]\( x = 0 \)[/tex], [tex]\( g(x) \)[/tex] is:

[tex]\[ \boxed{3} \][/tex]

3. Find [tex]\( x \)[/tex] such that [tex]\( g(x) = -5 \)[/tex]:

[tex]\[ g(x) = -5 \implies 3 - 8x = -5 \implies 8x = 8 \implies x = 1 \][/tex]

So, for [tex]\( g(x) = -5 \)[/tex], [tex]\( x \)[/tex] is:

[tex]\[ \boxed{1} \][/tex]

4. Find [tex]\( g(3) \)[/tex]:

[tex]\[ g(3) = 3 - 8 \cdot 3 = 3 - 24 = -21 \][/tex]

So, for [tex]\( x = 3 \)[/tex], [tex]\( g(x) \)[/tex] is:

[tex]\[ \boxed{-21} \][/tex]

Now, we can complete the table:

[tex]\[ \begin{tabular}{|c|c|} \hline x & g(x) \\ \hline \boxed{\frac{3}{8}} & 0 \\ \hline 0 & \boxed{3} \\ \hline \boxed{1} & -5 \\ \hline 3 & \boxed{-21} \\ \hline \end{tabular} \][/tex]