Drag the tiles to the correct locations on the equation. Not all pieces will be used.

Consider this absolute value function:

[tex]\[ f(x) = |x + 3| \][/tex]

How can function [tex]\( f \)[/tex] be rewritten as a piecewise function?

[tex]\[
\begin{array}{l}
x \ \textless \ -3 \quad x - 3 \quad -x + 3 \quad x \geq -3 \quad x \geq 3 \quad x \ \textless \ -3 \quad -x - 3 \\
f(x) = \left\{
\begin{array}{ll}
x + 3, & x \geq -3 \\
-(x + 3), & x \ \textless \ -3 \\
\end{array}
\right.
\end{array}
\][/tex]



Answer :

To rewrite the absolute value function [tex]\( f(x) = |x + 3| \)[/tex] as a piecewise function, we need to consider the behavior of the function based on the value of [tex]\( x \)[/tex].

### Step-by-Step Solution:

1. Identify the expression inside the absolute value: The function given is [tex]\( f(x) = |x + 3| \)[/tex].

2. Determine when the expression inside the absolute value is non-negative or negative:
- [tex]\( x + 3 \geq 0 \)[/tex]
- [tex]\( x + 3 < 0 \)[/tex]

3. Solve these inequalities to find the critical value:
- For [tex]\( x + 3 \ge 0 \)[/tex], simplify to [tex]\( x \ge -3 \)[/tex]
- For [tex]\( x + 3 < 0 \)[/tex], simplify to [tex]\( x < -3 \)[/tex]

4. Write the piecewise function based on these intervals:
- When [tex]\( x \ge -3 \)[/tex], the expression [tex]\( x + 3 \)[/tex] is non-negative, so [tex]\( |x + 3| = x + 3 \)[/tex]
- When [tex]\( x < -3 \)[/tex], the expression [tex]\( x + 3 \)[/tex] is negative, so [tex]\( |x + 3| = -(x + 3) = -x - 3 \)[/tex]

5. Combine these pieces to form the piecewise function:

[tex]\[ f(x) = \begin{cases} x + 3, & \text{if } x \ge -3 \\ -x - 3, & \text{if } x < -3 \end{cases} \][/tex]

So, filling in the blanks in the equation, we get:

[tex]\[ \begin{array}{l} f(x)=\left\{\begin{array}{l} x + 3, \quad \text{if } x \geq -3 \\ -x - 3, \quad \text{if } x < -3 \end{array}\right. \end{array} \][/tex]

Hence, the absolute value function [tex]\( f(x) = |x + 3| \)[/tex] can be rewritten as the piecewise function as shown above.