Select the correct answer.

Which equation correctly solves this formula for [tex]r[/tex]?

[tex]V=\pi r^2 h[/tex]

A. [tex]r=\sqrt{\frac{V}{\pi h}}[/tex]

B. [tex]r=\sqrt{\frac{V}{\pi}-h}[/tex]

C. [tex]r=\frac{V \pi h}{2}[/tex]

D. [tex]r=\frac{V}{2 \pi h}[/tex]



Answer :

To solve the given formula for [tex]\( r \)[/tex], we start with the equation:

[tex]\[ V = \pi r^2 h \][/tex]

We want to isolate [tex]\( r \)[/tex], so let's perform the algebraic steps step-by-step.

1. Divide both sides by [tex]\(\pi h\)[/tex]:
[tex]\[ \frac{V}{\pi h} = r^2 \][/tex]

2. Take the square root of both sides to solve for [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{\frac{V}{\pi h}} \][/tex]

Now, let's compare this result with the given options:

A. [tex]\[ r = \sqrt{\frac{V}{\pi h}} \][/tex]
This matches our derived equation.

B. [tex]\[ r = \sqrt{\frac{V}{\pi} - h} \][/tex]
This is not correct because it incorrectly subtracts [tex]\( h \)[/tex] instead of representing the division and then the square root.

C. [tex]\[ r = \frac{V \pi h}{2} \][/tex]
This is incorrect because it has an entirely misplaced formula involving multiplication and different positioning of terms.

D. [tex]\[ r = \frac{V}{2 \pi h} \][/tex]
This is incorrect as it suggests simple division without the square root, and the denominator differs from our derived formula.

Therefore, the correct answer is:

[tex]\[ \boxed{r = \sqrt{\frac{V}{\pi h}}} \][/tex]

Thus, the correct option is:

A. [tex]\( r = \sqrt{\frac{V}{\pi h}} \)[/tex]