Select the correct answer.

Solve the equation by completing the square.

[tex]\[ 0 = 4x^2 - 72x \][/tex]

A. [tex]\( x = 0, 18 \)[/tex]
B. [tex]\( x = -18, 0 \)[/tex]
C. [tex]\( x = -72, 90 \)[/tex]
D. [tex]\( x = -90, 72 \)[/tex]



Answer :

To solve the equation [tex]\( 0 = 4x^2 - 72x \)[/tex] by completing the square, follow these steps:

1. Factor out the coefficient of [tex]\( x^2 \)[/tex]:
[tex]\[ 0 = 4(x^2 - 18x) \][/tex]
Divide each side of the equation by 4 to simplify:
[tex]\[ 0 = x^2 - 18x \][/tex]

2. Complete the square inside the parentheses:
- Take the coefficient of [tex]\( x \)[/tex], which is [tex]\(-18\)[/tex], divide by 2, and square it:
[tex]\[ \left(\frac{-18}{2}\right)^2 = (-9)^2 = 81 \][/tex]

- Add and subtract this value (81) inside the parentheses:
[tex]\[ x^2 - 18x + 81 - 81 \][/tex]

- Rewrite it as a perfect square and the remaining constant:
[tex]\[ 0 = (x - 9)^2 - 81 \][/tex]

3. Isolate the perfect square term:
[tex]\[ (x - 9)^2 - 81 = 0 \][/tex]

4. Move the constant term to the other side:
[tex]\[ (x - 9)^2 = 81 \][/tex]

5. Take the square root of both sides:
[tex]\[ x - 9 = \pm \sqrt{81} \][/tex]
Since [tex]\(\sqrt{81} = 9\)[/tex], we have:
[tex]\[ x - 9 = \pm 9 \][/tex]

6. Solve for [tex]\( x \)[/tex] by isolating [tex]\( x \)[/tex]:
- For the positive root: [tex]\( x - 9 = 9 \)[/tex]:
[tex]\[ x = 9 + 9 = 18 \][/tex]

- For the negative root: [tex]\( x - 9 = -9 \)[/tex]:
[tex]\[ x = 9 - 9 = 0 \][/tex]

The solutions to the equation are:
[tex]\[ x = 0 \text{ and } x = 18 \][/tex]

Thus, the correct answer is:
A. [tex]\( x = 0, 18 \)[/tex]