Select the correct answer.

The formula for the volume of a right square pyramid is given below, where [tex]\(a\)[/tex] is the side length of the base and [tex]\(h\)[/tex] is the height:

[tex]\[ V = \frac{1}{3} a^2 h \][/tex]

Rewrite the formula by solving for [tex]\(a\)[/tex].

A. [tex]\(a = 3 \sqrt{\frac{h}{V}}\)[/tex]

B. [tex]\(a = \sqrt{\frac{3}{V}}\)[/tex]

C. [tex]\(a = \sqrt{\frac{37}{h}}\)[/tex]

D. [tex]\(a = \sqrt{\frac{3V}{h}}\)[/tex]



Answer :

Sure, let's solve for [tex]\( a \)[/tex] step by step starting from the given formula for the volume of a right square pyramid:

[tex]\[ V = \frac{1}{3} a^2 h \][/tex]

1. Multiply both sides by 3 to clear the fraction:

[tex]\[ 3V = a^2 h \][/tex]

2. Divide both sides by [tex]\( h \)[/tex] to isolate [tex]\( a^2 \)[/tex]:

[tex]\[ a^2 = \frac{3V}{h} \][/tex]

3. Take the square root of both sides to solve for [tex]\( a \)[/tex]:

[tex]\[ a = \sqrt{\frac{3V}{h}} \][/tex]

So, the correct answer is:

[tex]\[ \boxed{a = \sqrt{\frac{3V}{h}}} \][/tex]

Looking at the options given:

A. [tex]\( a = 3 \sqrt{\frac{h}{V}} \)[/tex]

B. [tex]\( a = \sqrt{\frac{3}{V}} \)[/tex]

C. [tex]\( a = \sqrt{\frac{37}{h}} \)[/tex]

D. [tex]\( a = \sqrt{\frac{3V}{h}} \)[/tex]

The correct answer is option D: [tex]\( a = \sqrt{\frac{3V}{h}} \)[/tex].