Answer :

Alright, let's solve the limit problem step by step:

We need to find the limit
[tex]\[ \lim _{n \rightarrow+\infty} \frac{2 n^2 + n - 1}{n^3 - 6 n^2 + n + 2} \][/tex]

Step-by-step solution:

1. Identify the degrees of the polynomial in the numerator and the denominator:
The highest degree term in the numerator [tex]\(2n^2 + n - 1\)[/tex] is [tex]\(2n^2\)[/tex].
The highest degree term in the denominator [tex]\(n^3 - 6n^2 + n + 2\)[/tex] is [tex]\(n^3\)[/tex].

2. Divide both the numerator and the denominator by the highest degree term in the denominator (which is [tex]\(n^3\)[/tex]):
[tex]\[ \lim_{n \to \infty} \frac{2n^2 + n - 1}{n^3 - 6n^2 + n + 2} = \lim_{n \to \infty} \frac{\frac{2n^2}{n^3} + \frac{n}{n^3} - \frac{1}{n^3}}{\frac{n^3}{n^3} - \frac{6n^2}{n^3} + \frac{n}{n^3} + \frac{2}{n^3}} \][/tex]

3. Simplify the fractions in both the numerator and the denominator:
[tex]\[ = \lim_{n \to \infty} \frac{\frac{2}{n} + \frac{1}{n^2} - \frac{1}{n^3}}{1 - \frac{6}{n} + \frac{1}{n^2} + \frac{2}{n^3}} \][/tex]

4. Analyze the behavior of each term as [tex]\(n\)[/tex] approaches infinity:
- [tex]\(\frac{2}{n} \rightarrow 0\)[/tex]
- [tex]\(\frac{1}{n^2} \rightarrow 0\)[/tex]
- [tex]\(\frac{1}{n^3} \rightarrow 0\)[/tex]
- [tex]\(\frac{6}{n} \rightarrow 0\)[/tex]
- [tex]\(\frac{1}{n^2} \rightarrow 0\)[/tex]
- [tex]\(\frac{2}{n^3} \rightarrow 0\)[/tex]

5. Substitute these limits back into the expression:
[tex]\[ = \frac{0 + 0 - 0}{1 - 0 + 0 + 0} = \frac{0}{1} = 0 \][/tex]

Therefore, the limit is:
[tex]\[ \lim _{n \rightarrow+\infty} \frac{2 n^2 + n - 1}{n^3 - 6 n^2 + n + 2} = 0 \][/tex]