An exponential function in the form [tex]$y=20(b)^x$[/tex] contains the points [tex]$(0,20)$[/tex] and [tex][tex]$(1,10)$[/tex][/tex]. What is the value of [tex]b[/tex]?

Do not include [tex]$b=$[/tex] in your answer.

Provide your answer below:



Answer :

To determine the value of [tex]\( b \)[/tex] for the given exponential function in the form [tex]\( y = 20b^x \)[/tex] that passes through the points [tex]\((0, 20)\)[/tex] and [tex]\((1, 10)\)[/tex], follow these steps:

1. Start with the general form of the exponential equation:
[tex]\[ y = 20b^x \][/tex]

2. Substitute the coordinates of the first point [tex]\((0, 20)\)[/tex] into the equation:
[tex]\[ 20 = 20b^0 \][/tex]
Since any number to the power of 0 is 1, this simplifies to:
[tex]\[ 20 = 20 \cdot 1 \][/tex]

3. This confirms that [tex]\( y = 20 \)[/tex] when [tex]\( x = 0 \)[/tex], which aligns with the given function. Hence, the equation remains:
[tex]\[ y = 20b^x \][/tex]

4. Next, use the second point [tex]\((1, 10)\)[/tex] and substitute it into the equation:
[tex]\[ 10 = 20b^1 \][/tex]
Simplify the equation:
[tex]\[ 10 = 20b \][/tex]

5. Solve for [tex]\( b \)[/tex] by dividing both sides of the equation by 20:
[tex]\[ b = \frac{10}{20} \][/tex]
Simplify the fraction:
[tex]\[ b = 0.5 \][/tex]

Therefore, the value of [tex]\( b \)[/tex] is [tex]\( 0.5 \)[/tex].