If [tex]$y$[/tex] varies inversely as the square of [tex]$x$[/tex], and [tex]$y=\frac{7}{4}$[/tex] when [tex]$x=1$[/tex], find [tex]$y$[/tex] when [tex]$x=3$[/tex].

a. [tex]$y=\frac{1}{3 x^2} ; y(3)=\frac{1}{27}$[/tex]
b. [tex]$y=\frac{4}{7 x^2} ; y(3)=\frac{4}{63}$[/tex]
c. [tex]$y=\frac{7}{4 x^2} ; y(3)=\frac{7}{36}$[/tex]
d. [tex]$y=\frac{3}{x^2} ; y(3)=\frac{1}{3}$[/tex]



Answer :

To solve the problem where [tex]\( y \)[/tex] varies inversely as the square of [tex]\( x \)[/tex], and given that [tex]\( y = \frac{7}{4} \)[/tex] when [tex]\( x = 1 \)[/tex], we need to find the expression for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex] and then determine [tex]\( y \)[/tex] for [tex]\( x = 3 \)[/tex].

1. Understanding the Relationship:
Since [tex]\( y \)[/tex] varies inversely as the square of [tex]\( x \)[/tex], the relationship can be written as:
[tex]\[ y = \frac{k}{x^2} \][/tex]
where [tex]\( k \)[/tex] is a constant.

2. Finding the Constant [tex]\( k \)[/tex]:
We are given that [tex]\( y = \frac{7}{4} \)[/tex] when [tex]\( x = 1 \)[/tex]. Substitute these values into the equation to find [tex]\( k \)[/tex]:
[tex]\[ \frac{7}{4} = \frac{k}{1^2} \][/tex]
[tex]\[ k = \frac{7}{4} \][/tex]

3. Expression for [tex]\( y \)[/tex]:
Now that we have [tex]\( k = \frac{7}{4} \)[/tex], we can write the equation for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex]:
[tex]\[ y = \frac{\frac{7}{4}}{x^2} = \frac{7}{4x^2} \][/tex]

4. Finding [tex]\( y \)[/tex] when [tex]\( x = 3 \)[/tex]:
Substitute [tex]\( x = 3 \)[/tex] into the equation:
[tex]\[ y = \frac{7}{4 \cdot (3^2)} = \frac{7}{4 \cdot 9} = \frac{7}{36} \][/tex]

Thus, the value of [tex]\( y \)[/tex] when [tex]\( x = 3 \)[/tex] is [tex]\( \frac{7}{36} \)[/tex], and the equation that represents the relationship is [tex]\( y = \frac{7}{4x^2} \)[/tex].

Therefore, the correct answer is:

c. [tex]\( y = \frac{7}{4 x^2} ; y(3) = \frac{7}{36} \)[/tex]