Type the correct answer in the box. Use numerals instead of words. If necessary, use / for the fraction bar.

[tex]$
\begin{array}{l}
y = x^2 - 2x - 19 \\
y + 4x = 5
\end{array}
$[/tex]

The pair of points representing the solution set of this system of equations is [tex]$(-6, 29)$[/tex] and



Answer :

To solve the given system of equations, follow these steps:

1. Start with the two given equations:
[tex]\[ y = x^2 - 2x - 19 \][/tex]
[tex]\[ y + 4x = 5 \][/tex]

2. Rearrange the second equation to express [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex]:
[tex]\[ y = 5 - 4x \][/tex]

3. Substitute [tex]\( y = 5 - 4x \)[/tex] into the first equation:
[tex]\[ 5 - 4x = x^2 - 2x - 19 \][/tex]

4. Bring all terms to one side of the equation to form a quadratic equation:
[tex]\[ x^2 - 2x - 19 + 4x - 5 = 0 \][/tex]
Simplify the equation:
[tex]\[ x^2 + 2x - 24 = 0 \][/tex]

5. Solve the quadratic equation [tex]\( x^2 + 2x - 24 = 0 \)[/tex]:
- To find the roots of the quadratic equation, use the quadratic formula:
[tex]\[ x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a} \][/tex]
where [tex]\( a = 1 \)[/tex], [tex]\( b = 2 \)[/tex], and [tex]\( c = -24 \)[/tex].

6. Calculate the discriminant:
[tex]\[ b^2 - 4ac = 2^2 - 4 \cdot 1 \cdot (-24) = 4 + 96 = 100 \][/tex]

7. Find the square root of the discriminant:
[tex]\[ \sqrt{100} = 10 \][/tex]

8. Compute the roots:
[tex]\[ x_1 = \frac{{-2 + 10}}{2} = \frac{8}{2} = 4 \][/tex]
[tex]\[ x_2 = \frac{{-2 - 10}}{2} = \frac{-12}{2} = -6 \][/tex]

9. Calculate the corresponding [tex]\( y \)[/tex] values for both [tex]\( x \)[/tex] values using [tex]\( y = 5 - 4x \)[/tex]:
- For [tex]\( x = 4 \)[/tex]:
[tex]\[ y = 5 - 4 \cdot 4 = 5 - 16 = -11 \][/tex]

- For [tex]\( x = -6 \)[/tex]:
[tex]\[ y = 5 - 4 \cdot (-6) = 5 + 24 = 29 \][/tex]

10. Thus, the pair of points representing the solution set of this system of equations is [tex]\( (4, -11) \)[/tex] and [tex]\( (-6, 29) \)[/tex].

The correct answer for the solution set is:
[tex]\[ (4, -11) \][/tex]