Answer :

To find the sum of the interior angles of a pentagon, we can use a well-known formula for the sum of the interior angles of any polygon.

The formula for finding the sum of the interior angles of a polygon with [tex]\( n \)[/tex] sides is given by:
[tex]\[ (n - 2) \times 180^\circ \][/tex]
where [tex]\( n \)[/tex] represents the number of sides.

Step-by-step solution:

1. Determine the number of sides in a pentagon:
- A pentagon has 5 sides.

2. Substitute the number of sides into the formula:
[tex]\[ (5 - 2) \times 180^\circ \][/tex]

3. Simplify the expression inside the parentheses:
[tex]\[ 3 \times 180^\circ \][/tex]

4. Multiply the numbers:
[tex]\[ 540^\circ \][/tex]

Thus, the sum of the interior angles of a pentagon is [tex]\( 540^\circ \)[/tex].

The correct answer from the given options is:
[tex]\[ 540^\circ \][/tex]