Answer :

Alright, let's simplify the given expression step-by-step:

[tex]\[ \sqrt[3]{36 x^2 \sqrt{12 x \sqrt{9 x^2}}} \][/tex]

1. Simplify the innermost part: Start by simplifying the innermost square root.

[tex]\[ \sqrt{9 x^2} \][/tex]

The square root of [tex]\(9 x^2\)[/tex] is:

[tex]\[ \sqrt{9 x^2} = 3x \][/tex]

2. Substitute and simplify further: Now, substitute [tex]\(3x\)[/tex] back into the expression.

[tex]\[ \sqrt[3]{36 x^2 \sqrt{12 x (3x)}} \][/tex]

And then multiply inside the square root:

[tex]\[ 12 x (3x) = 36 x^2 \][/tex]

So, the expression becomes:

[tex]\[ \sqrt[3]{36 x^2 \sqrt{36 x^2}} \][/tex]

3. Simplify the square root:

[tex]\[ \sqrt{36 x^2} \][/tex]

The square root of [tex]\(36 x^2\)[/tex] is:

[tex]\[ \sqrt{36 x^2} = 6x \][/tex]

Now substitute [tex]\(6x\)[/tex] back in:

[tex]\[ \sqrt[3]{36 x^2 (6x)} \][/tex]

4. Multiply the terms inside the cube root:

[tex]\[ 36 x^2 (6x) = 216 x^3 \][/tex]

So now we have:

[tex]\[ \sqrt[3]{216 x^3} \][/tex]

5. Simplify the cube root:

The cube root of [tex]\(216 x^3\)[/tex] is:

[tex]\[ \sqrt[3]{216 x^3} = 6x \][/tex]

Therefore, the simplified form of the given expression is:

[tex]\[ 6 x \][/tex]

Hence, the original expression simplifies to:

[tex]\[ \boxed{6 x} \][/tex]