\begin{tabular}{|l|l|l|l|}
\hline
[tex]$x$[/tex] & Frecuencia & Frecuencia Relativa \\
\hline
2012 & 134.48 & 8.81 \\
2013 & 135.97 & 62.37 \\
2014 & 137.09 & 45.88 \\
2015 & 134.03 & 1.01 \\
2016 & 128.73 & 10.37 \\
2017 & 131.27 & 20.27 \\
2018 & 131.57 & 8.66 \\
2019 & 136.25 & 28.77 \\
\hline
2020 & 139.49 & 255.88 \\
\hline
\end{tabular}



Answer :

Let's analyze the data presented in the table.

The table provides three columns:

1. Year (x): This column indicates the specific year.
2. Frequency: This column represents the frequency value associated with each year.
3. Relative Frequency: This column gives the relative frequency value corresponding to each year.

The data is listed for the years from 2012 to 2020 (inclusive). The steps are as follows:

1. Identify the years for which data is given: 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, and 2020.

2. Note down the frequency values corresponding to each year:
- 2012: 134.48
- 2013: 135.97
- 2014: 137.09
- 2015: 134.03
- 2016: 128.73
- 2017: 131.27
- 2018: 131.57
- 2019: 136.25
- 2020: 139.49

3. Record the relative frequency values associated with each year:
- 2012: 8.81
- 2013: 62.37
- 2014: 45.88
- 2015: 1.01
- 2016: 10.37
- 2017: 20.27
- 2018: 8.66
- 2019: 28.77
- 2020: 255.88

Summarizing the values, we get:

[tex]\(\begin{array}{|c|c|c|} \hline \text{Year} & \text{Frequency} & \text{Relative Frequency} \\ \hline 2012 & 134.48 & 8.81 \\ 2013 & 135.97 & 62.37 \\ 2014 & 137.09 & 45.88 \\ 2015 & 134.03 & 1.01 \\ 2016 & 128.73 & 10.37 \\ 2017 & 131.27 & 20.27 \\ 2018 & 131.57 & 8.66 \\ 2019 & 136.25 & 28.77 \\ 2020 & 139.49 & 255.88 \\ \hline \end{array}\)[/tex]

Each year corresponds to a specific frequency and relative frequency as listed above. This table was constructed from the given values for each year.