Solve each equation. Then check to see whether your solution makes the original equation true.

1. [tex] x + 12 = 20 [/tex]
[tex] x = [/tex] \qquad

2. [tex] x + 44 = 69 [/tex]
[tex] x = [/tex] \qquad

3. [tex] 9 + 6 = x [/tex]
[tex] x = [/tex] \qquad

4. [tex] x + 14 = 54 [/tex]
[tex] x = [/tex] \qquad

5. [tex] 45 - 6 = x [/tex]
[tex] x = [/tex] \qquad

6. [tex] x + 32 = 47 [/tex]
[tex] x = [/tex] \qquad

7. [tex] x - 39 = 64 [/tex]
[tex] x = [/tex]



Answer :

Alright, let's solve each of the given equations step-by-step and verify that the solutions are correct.

1. [tex]\( x + 12 = 20 \)[/tex]
- Isolate [tex]\( x \)[/tex] by subtracting 12 from both sides:
[tex]\[ x = 20 - 12 \][/tex]
[tex]\[ x = 8 \][/tex]
- Check: Substitute [tex]\( x = 8 \)[/tex] back into the original equation:
[tex]\[ 8 + 12 = 20 \][/tex]
Since this is true, the solution [tex]\( x = 8 \)[/tex] is correct.

2. [tex]\( x + 44 = 69 \)[/tex]
- Isolate [tex]\( x \)[/tex] by subtracting 44 from both sides:
[tex]\[ x = 69 - 44 \][/tex]
[tex]\[ x = 25 \][/tex]
- Check: Substitute [tex]\( x = 25 \)[/tex] back into the original equation:
[tex]\[ 25 + 44 = 69 \][/tex]
Since this is true, the solution [tex]\( x = 25 \)[/tex] is correct.

3. [tex]\( 9 + 6 = x \)[/tex]
- Calculate the sum:
[tex]\[ x = 9 + 6 \][/tex]
[tex]\[ x = 15 \][/tex]
- Check: Substitute [tex]\( x = 15 \)[/tex] back into the original equation:
[tex]\[ 9 + 6 = 15 \][/tex]
Since this is true, the solution [tex]\( x = 15 \)[/tex] is correct.

4. [tex]\( x + 14 = 54 \)[/tex]
- Isolate [tex]\( x \)[/tex] by subtracting 14 from both sides:
[tex]\[ x = 54 - 14 \][/tex]
[tex]\[ x = 40 \][/tex]
- Check: Substitute [tex]\( x = 40 \)[/tex] back into the original equation:
[tex]\[ 40 + 14 = 54 \][/tex]
Since this is true, the solution [tex]\( x = 40 \)[/tex] is correct.

5. [tex]\( 45 - 6 = x \)[/tex]
- Calculate the difference:
[tex]\[ x = 45 - 6 \][/tex]
[tex]\[ x = 39 \][/tex]
- Check: Substitute [tex]\( x = 39 \)[/tex] back into the original equation:
[tex]\[ 45 - 6 = 39 \][/tex]
Since this is true, the solution [tex]\( x = 39 \)[/tex] is correct.

6. [tex]\( x + 32 = 47 \)[/tex]
- Isolate [tex]\( x \)[/tex] by subtracting 32 from both sides:
[tex]\[ x = 47 - 32 \][/tex]
[tex]\[ x = 15 \][/tex]
- Check: Substitute [tex]\( x = 15 \)[/tex] back into the original equation:
[tex]\[ 15 + 32 = 47 \][/tex]
Since this is true, the solution [tex]\( x = 15 \)[/tex] is correct.

7. [tex]\( x - 39 = 64 \)[/tex]
- Isolate [tex]\( x \)[/tex] by adding 39 to both sides:
[tex]\[ x = 64 + 39 \][/tex]
[tex]\[ x = 103 \][/tex]
- Check: Substitute [tex]\( x = 103 \)[/tex] back into the original equation:
[tex]\[ 103 - 39 = 64 \][/tex]
Since this is true, the solution [tex]\( x = 103 \)[/tex] is correct.

To summarize, the solutions to the equations are:
1. [tex]\( x = 8 \)[/tex]
2. [tex]\( x = 25 \)[/tex]
3. [tex]\( x = 15 \)[/tex]
4. [tex]\( x = 40 \)[/tex]
5. [tex]\( x = 39 \)[/tex]
6. [tex]\( x = 15 \)[/tex]
7. [tex]\( x = 103 \)[/tex]

All solutions have been checked and confirmed to be correct.