The quadratic function [tex]\( f(x) \)[/tex] has roots of -4 and 2, and the point [tex]\( (1, -5) \)[/tex] lies on [tex]\( f(x) \)[/tex]. What is the equation of [tex]\( f(x) \)[/tex]?

A. [tex]\( f(x) = (x - 2)(x + 4) \)[/tex]

B. [tex]\( f(x) = (x - 2)(x - 4) \)[/tex]

C. [tex]\( f(x) = 4(x - 2)(x + 4) \)[/tex]

D. [tex]\( f(x) = 4(x - 2)(x - 4) \)[/tex]



Answer :

To determine the equation of the quadratic function [tex]\( f(x) \)[/tex] given its roots and a point on the function, let's follow a systematic approach:

1. Identify the roots of the quadratic function:
The roots of the quadratic function are given as [tex]\(-4\)[/tex] and [tex]\(2\)[/tex]. This means the quadratic function can be expressed in factored form as:
[tex]\[ f(x) = a(x - 2)(x + 4) \][/tex]
where [tex]\( a \)[/tex] is a constant that we need to determine.

2. Use the given point to find [tex]\( a \)[/tex]:
The function passes through the point [tex]\((1, -5)\)[/tex]. This implies [tex]\( f(1) = -5 \)[/tex]. Substitute [tex]\( x = 1 \)[/tex] and [tex]\( f(x) = -5 \)[/tex] into the equation:
[tex]\[ -5 = a(1 - 2)(1 + 4) \][/tex]
Simplify the right-hand side:
[tex]\[ -5 = a(-1)(5) \][/tex]
[tex]\[ -5 = -5a \][/tex]
Solve for [tex]\( a \)[/tex]:
[tex]\[ a = 1 \][/tex]

3. Write the complete equation of the function:
Now that we have determined [tex]\( a = 1 \)[/tex], we can write the final quadratic function as:
[tex]\[ f(x) = (x - 2)(x + 4) \][/tex]

4. Verify the options:
Given the equation we derived, we need to check the provided options for correctness:
[tex]\[ f(x) = (x - 2)(x + 4) \][/tex]
This matches the first option.

Therefore, the equation of the quadratic function [tex]\( f(x) \)[/tex] is:
[tex]\[ f(x) = (x - 2)(x + 4) \][/tex]

So, the correct option is:
[tex]\[ \boxed{1} \][/tex]