The formula used to convert degrees Celsius to degrees Fahrenheit is [tex]F=\frac{9}{5} C + 32[/tex].

Convert [tex]59^{\circ} F[/tex] to degrees Celsius. Solve the formula for [tex]C[/tex], and then use it to convert the temperature.

Which is the correct formula and conversion?
A. [tex]C=\frac{5}{9} F - 32[/tex]; conversion: [tex]59^{\circ} F = 135^{\circ} C[/tex]
B. [tex]C=\frac{5}{9}(F - 32)[/tex]; conversion: [tex]59^{\circ} F = 15^{\circ} C[/tex]
C. [tex]C=\frac{5}{9} F - 32[/tex]; conversion: [tex]59^{\circ} F = 15^{\circ} C[/tex]
D. [tex]C=\frac{5}{9}(F - 32)[/tex]; conversion: [tex]59^{\circ} F = 106^{\circ} C[/tex]



Answer :

To convert [tex]\( 59^{\circ} F \)[/tex] to degrees Celsius, you need to solve the given formula for [tex]\( C \)[/tex]. The initial formula for converting Celsius to Fahrenheit is:

[tex]\[ F = \frac{9}{5} C + 32 \][/tex]

We need to express [tex]\( C \)[/tex] in terms of [tex]\( F \)[/tex]. To do this, follow these steps:

1. Subtract 32 from both sides of the formula to isolate the term involving [tex]\( C \)[/tex]:

[tex]\[ F - 32 = \frac{9}{5} C \][/tex]

2. Multiply both sides of the equation by [tex]\( \frac{5}{9} \)[/tex] to solve for [tex]\( C \)[/tex]:

[tex]\[ C = \frac{5}{9} (F - 32) \][/tex]

Now that we have the correct formula, [tex]\( C = \frac{5}{9} (F - 32) \)[/tex], we can use it to convert [tex]\( 59^{\circ} F \)[/tex] to degrees Celsius:

[tex]\[ C = \frac{5}{9} (59 - 32) \][/tex]

Calculate the value inside the parenthesis first:

[tex]\[ 59 - 32 = 27 \][/tex]

Next, multiply by [tex]\( \frac{5}{9} \)[/tex]:

[tex]\[ C = \frac{5}{9} \times 27 \][/tex]

This simplifies to:

[tex]\[ C = 15 \][/tex]

So, [tex]\( 59^{\circ} F = 15^{\circ} C \)[/tex].

Reviewing the options:

A. [tex]\( C = \frac{5}{9} F - 32 \)[/tex]; conversion: [tex]\( 59^{\circ} F = 135^{\circ} C \)[/tex]

B. [tex]\( C = \frac{5}{9} (F - 32) \)[/tex]; conversion: [tex]\( 59^{\circ} F = 15^{\circ} C \)[/tex]

C. [tex]\( C = \frac{5}{9} F - 32 \)[/tex]; conversion: [tex]\( 59^{\circ} F = 15^{\circ} C \)[/tex]

D. [tex]\( C = \frac{5}{9} (F - 32) \)[/tex]; conversion: [tex]\( 59^{\circ} F = 106^{\circ} C \)[/tex]

The correct formula and conversion are given in Option B:

[tex]\[ C = \frac{5}{9} (F - 32); \quad 59^{\circ} F = 15^{\circ} C \][/tex]