Which expression gives the distance between the points [tex]$(4,6)$[/tex] and [tex]$(7,-3)$[/tex]?

A. [tex]$\sqrt{(4-7)^2+(6+3)^2}$[/tex]
B. [tex]$(4-7)^2+(6+3)^2$[/tex]
C. [tex]$(4-7)^2+(6-3)^2$[/tex]
D. [tex]$\sqrt{(4-7)^2+(6-3)^2}$[/tex]



Answer :

To find the distance between the points [tex]\((4,6)\)[/tex] and [tex]\((7,-3)\)[/tex], we can use the distance formula. The distance formula for two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:

[tex]\[ \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

Let's determine the correct expression step by step:

1. Subtract the x-coordinates:
[tex]\[ x_2 - x_1 = 7 - 4 = 3 \][/tex]

2. Subtract the y-coordinates:
[tex]\[ y_2 - y_1 = -3 - 6 = -9 \][/tex]

3. Square the differences:
[tex]\[ (x_2 - x_1)^2 = 3^2 = 9 \][/tex]
[tex]\[ (y_2 - y_1)^2 = (-9)^2 = 81 \][/tex]

4. Add the squared differences:
[tex]\[ 9 + 81 = 90 \][/tex]

5. Take the square root of the sum:
[tex]\[ \sqrt{90} \][/tex]

The expression that matches this step-by-step solution is:

[tex]\[ \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(4 - 7)^2 + (6 - 3)^2} \][/tex]

Among the given options, the correct one that represents the distance formula is:

D. [tex]\(\sqrt{(4-7)^2+(6-3)^2}\)[/tex]