Answer :

To solve [tex]\((0,2)^2\)[/tex], we first represent the complex number [tex]\(0 + 2i\)[/tex]:

1. The complex number in question is [tex]\(0 + 2i\)[/tex].

Next, we need to square this complex number:

2. Recall that to square a complex number [tex]\(a + bi\)[/tex], we use the formula:

[tex]\[ (a + bi)^2 = a^2 + 2ab i + (bi)^2 \][/tex]

3. Substitute [tex]\(a = 0\)[/tex] and [tex]\(b = 2\)[/tex]:

[tex]\[ (0 + 2i)^2 = 0^2 + 2 \cdot 0 \cdot 2i + (2i)^2 \][/tex]

4. Simplify each term:

[tex]\[ 0^2 = 0 \][/tex]
[tex]\[ 2 \cdot 0 \cdot 2i = 0 \][/tex]
[tex]\[ (2i)^2 = 4i^2 \][/tex]

5. Recall that [tex]\(i^2 = -1\)[/tex]:

[tex]\[ 4i^2 = 4 \cdot (-1) = -4 \][/tex]

6. Combine all terms:

[tex]\[ 0 + 0 + (-4) = -4 \][/tex]

Thus, the result of squaring the complex number [tex]\(0 + 2i\)[/tex] is [tex]\(-4\)[/tex]. Therefore,

[tex]\[ (0, 2)^2 = -4. \][/tex]