Mind Boggler 3.2

1. Observe the following pattern:
[tex]\[1 = \frac{1 \times 2}{2}\][/tex]
[tex]\[1 + 2 = \frac{2 \times 3}{2}\][/tex]
[tex]\[1 + 2 + 3 = \frac{3 \times 4}{2}\][/tex]
[tex]\[1 + 2 + 3 + 4 = \frac{4 \times 5}{2}\][/tex]

Now, find the value of each of the following:

(a) [tex]\[1 + 2 + 3 + \ldots + 100\][/tex]

(b) [tex]\[21 + 22 + 23 + \ldots + 50\][/tex]



Answer :

Let's solve the problem step by step based on the given pattern and information.

Part (a): Finding the sum [tex]\(1 + 2 + 3 + \ldots + 100\)[/tex]

We observe the pattern in the problem:

[tex]\[ 1 = \frac{1 \times 2}{2} \][/tex]
[tex]\[ 1 + 2 = \frac{2 \times 3}{2} \][/tex]
[tex]\[ 1 + 2 + 3 = \frac{3 \times 4}{2} \][/tex]
[tex]\[ 1 + 2 + 3 + 4 = \frac{4 \times 5}{2} \][/tex]

Based on these examples, we see that the sum of the first [tex]\(n\)[/tex] natural numbers can be written as:

[tex]\[ 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2} \][/tex]

Here, [tex]\(n = 100\)[/tex]. Substituting 100 for [tex]\(n\)[/tex], we get:

[tex]\[ 1 + 2 + 3 + \ldots + 100 = \frac{100 \times 101}{2} \][/tex]

Thus,

[tex]\[ 1 + 2 + 3 + \ldots + 100 = \frac{100 \times 101}{2} = 5050 \][/tex]

So, the value of [tex]\(1 + 2 + 3 + \ldots + 100\)[/tex] is 5050.

Part (b): Finding the sum [tex]\(21 + 22 + 23 + \ldots + 50\)[/tex]

To find the sum of any arithmetic progression, we use the formula for the sum of the first [tex]\(n\)[/tex] terms of an arithmetic progression:

[tex]\[ S_n = \frac{n}{2}(a + l) \][/tex]

where:
- [tex]\(S_n\)[/tex] is the sum of the arithmetic sequence,
- [tex]\(n\)[/tex] is the number of terms,
- [tex]\(a\)[/tex] is the first term,
- [tex]\(l\)[/tex] is the last term.

In this case, the first term [tex]\(a\)[/tex] is 21, and the last term [tex]\(l\)[/tex] is 50. To find the number of terms ([tex]\(n\)[/tex]), we calculate the difference between the last and first terms and add 1:

[tex]\[ n = 50 - 21 + 1 = 30 \][/tex]

Now, substituting the values into the sum formula:

[tex]\[ S_{30} = \frac{30}{2} \times (21 + 50) \][/tex]

[tex]\[ S_{30} = 15 \times 71 \][/tex]

[tex]\[ S_{30} = 1065 \][/tex]

So, the value of [tex]\(21 + 22 + 23 + \ldots + 50\)[/tex] is 1065.

Summary:
- The value of [tex]\( 1 + 2 + 3 + \ldots + 100 \)[/tex] is 5050.
- The value of [tex]\( 21 + 22 + 23 + \ldots + 50 \)[/tex] is 1065.