Select the best answer for the question.

Simplify [tex]\left(15x^2 - 24x + 9\right) \div (3x - 3)[/tex].

A. [tex]5x + 3[/tex]

B. [tex]5x - 3[/tex]

C. [tex]5x + 13[/tex] with a -30 remainder

D. [tex]5x - 13[/tex] with a -30 remainder



Answer :

To simplify the expression [tex]\(\frac{15x^2 - 24x + 9}{3x - 3}\)[/tex], we need to perform polynomial division.

We divide the polynomial [tex]\(15x^2 - 24x + 9\)[/tex] by [tex]\(3x - 3\)[/tex].

Step-by-step procedure:

1. Setup the Division:
[tex]\[ \frac{15x^2 - 24x + 9}{3x - 3} \][/tex]

2. Divide the Leading Terms:
Divide the leading term of the dividend [tex]\(15x^2\)[/tex] by the leading term of the divisor [tex]\(3x\)[/tex]:
[tex]\[ \frac{15x^2}{3x} = 5x \][/tex]

3. Multiply and Subtract:
Multiply the entire divisor [tex]\(3x - 3\)[/tex] by the result from step 2:
[tex]\[ 5x \cdot (3x - 3) = 15x^2 - 15x \][/tex]
Subtract this result from the original dividend:
[tex]\[ (15x^2 - 24x + 9) - (15x^2 - 15x) = -24x + 15x + 9 = -9x + 9 \][/tex]

4. Repeat the Process:
Divide the leading term [tex]\(-9x\)[/tex] by the leading term [tex]\(3x\)[/tex]:
[tex]\[ \frac{-9x}{3x} = -3 \][/tex]
Multiply the entire divisor [tex]\(3x - 3\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\[ -3 \cdot (3x - 3) = -9x + 9 \][/tex]
Subtract this result from [tex]\(-9x + 9\)[/tex]:
[tex]\[ (-9x + 9) - (-9x + 9) = 0 \][/tex]

5. Quotient and Remainder:
The quotient is [tex]\(5x - 3\)[/tex] and the remainder is [tex]\(0\)[/tex].

Thus, the simplified form of the expression [tex]\(\frac{15x^2 - 24x + 9}{3x - 3}\)[/tex] is [tex]\(5x - 3\)[/tex].

Therefore, the correct answer is:
B. [tex]\(5x - 3\)[/tex]