Answer :
Let's tackle the given problems step by step.
### Part (a): [tex]\(1 + 2 + 3 + \cdots + 100\)[/tex]
Observe the given pattern, which shows that the sum of the first [tex]\( n \)[/tex] natural numbers can be expressed as:
[tex]\[1 + 2 + 3 + \cdots + n = \frac{n \times (n+1)}{2}\][/tex]
For [tex]\( n = 100 \)[/tex],
[tex]\[ \text{Sum} = \frac{100 \times 101}{2} \][/tex]
[tex]\[ \text{Sum} = \frac{10100}{2} \][/tex]
[tex]\[ \text{Sum} = 5050 \][/tex]
Therefore, the value of [tex]\(1 + 2 + 3 + \cdots + 100\)[/tex] is [tex]\(5050\)[/tex].
### Part (b): [tex]\(21 + 22 + 23 + \cdots + 50\)[/tex]
To find the sum of an arithmetic series, we use the following formula:
[tex]\[ \text{Sum} = \frac{n}{2} \times (\text{first term} + \text{last term}) \][/tex]
Where [tex]\( n \)[/tex] is the number of terms in the series.
1. First, find the number of terms ([tex]\( n \)[/tex]):
[tex]\( n = ( \text{last term} - \text{first term} ) + 1 \)[/tex]
For the series [tex]\(21, 22, 23, \cdots, 50\)[/tex]:
[tex]\[ n = (50 - 21) + 1 \][/tex]
[tex]\[ n = 30 \][/tex]
2. Calculate the sum using the arithmetic series formula:
[tex]\( \text{first term} = 21 \\ \text{last term} = 50 \)[/tex]
[tex]\[ \text{Sum} = \frac{30}{2} \times (21 + 50) \][/tex]
[tex]\[ \text{Sum} = 15 \times 71 \][/tex]
[tex]\[ \text{Sum} = 1065 \][/tex]
Therefore, the value of [tex]\(21 + 22 + 23 + \cdots + 50\)[/tex] is [tex]\(1065\)[/tex].
### Final Results:
(a) The value of [tex]\(1 + 2 + 3 + \cdots + 100\)[/tex] is [tex]\(5050\)[/tex].
(b) The value of [tex]\(21 + 22 + 23 + \cdots + 50\)[/tex] is [tex]\(1065\)[/tex].
### Part (a): [tex]\(1 + 2 + 3 + \cdots + 100\)[/tex]
Observe the given pattern, which shows that the sum of the first [tex]\( n \)[/tex] natural numbers can be expressed as:
[tex]\[1 + 2 + 3 + \cdots + n = \frac{n \times (n+1)}{2}\][/tex]
For [tex]\( n = 100 \)[/tex],
[tex]\[ \text{Sum} = \frac{100 \times 101}{2} \][/tex]
[tex]\[ \text{Sum} = \frac{10100}{2} \][/tex]
[tex]\[ \text{Sum} = 5050 \][/tex]
Therefore, the value of [tex]\(1 + 2 + 3 + \cdots + 100\)[/tex] is [tex]\(5050\)[/tex].
### Part (b): [tex]\(21 + 22 + 23 + \cdots + 50\)[/tex]
To find the sum of an arithmetic series, we use the following formula:
[tex]\[ \text{Sum} = \frac{n}{2} \times (\text{first term} + \text{last term}) \][/tex]
Where [tex]\( n \)[/tex] is the number of terms in the series.
1. First, find the number of terms ([tex]\( n \)[/tex]):
[tex]\( n = ( \text{last term} - \text{first term} ) + 1 \)[/tex]
For the series [tex]\(21, 22, 23, \cdots, 50\)[/tex]:
[tex]\[ n = (50 - 21) + 1 \][/tex]
[tex]\[ n = 30 \][/tex]
2. Calculate the sum using the arithmetic series formula:
[tex]\( \text{first term} = 21 \\ \text{last term} = 50 \)[/tex]
[tex]\[ \text{Sum} = \frac{30}{2} \times (21 + 50) \][/tex]
[tex]\[ \text{Sum} = 15 \times 71 \][/tex]
[tex]\[ \text{Sum} = 1065 \][/tex]
Therefore, the value of [tex]\(21 + 22 + 23 + \cdots + 50\)[/tex] is [tex]\(1065\)[/tex].
### Final Results:
(a) The value of [tex]\(1 + 2 + 3 + \cdots + 100\)[/tex] is [tex]\(5050\)[/tex].
(b) The value of [tex]\(21 + 22 + 23 + \cdots + 50\)[/tex] is [tex]\(1065\)[/tex].