The chart below shows a production possibility schedule for a pastry shop that makes [tex]$\$[/tex] 0.50[tex]$ profit per donut and $[/tex]\[tex]$ 0.75$[/tex] profit per bagel. Which choice yields the largest profit?

\begin{tabular}{|l|l|l|}
\hline Choice & Quantity of Donuts & Quantity of Bagels \\
\hline A & 600 & 70 \\
\hline B & 500 & 140 \\
\hline C & 500 & 40 \\
\hline
\end{tabular}

A. Choice A

B. Choice B

C. Choice C



Answer :

Let's calculate the profit for each choice, given the profit per donut and bagel.

1. Choice A:
- Quantity of Donuts: 600
- Quantity of Bagels: 70
- Profit per Donut: [tex]$0.50 - Profit per Bagel: $[/tex]0.75

Calculate the total profit for choice A:
[tex]\[ \text{Profit}_A = (600 \times 0.50) + (70 \times 0.75) \][/tex]

Break it down:
[tex]\[ 600 \times 0.50 = 300 \][/tex]
[tex]\[ 70 \times 0.75 = 52.5 \][/tex]
[tex]\[ \text{Profit}_A = 300 + 52.5 = 352.5 \][/tex]

2. Choice B:
- Quantity of Donuts: 500
- Quantity of Bagels: 140
- Profit per Donut: [tex]$0.50 - Profit per Bagel: $[/tex]0.75

Calculate the total profit for choice B:
[tex]\[ \text{Profit}_B = (500 \times 0.50) + (140 \times 0.75) \][/tex]

Break it down:
[tex]\[ 500 \times 0.50 = 250 \][/tex]
[tex]\[ 140 \times 0.75 = 105 \][/tex]
[tex]\[ \text{Profit}_B = 250 + 105 = 355 \][/tex]

3. Choice C:
- Quantity of Donuts: 500
- Quantity of Bagels: 40
- Profit per Donut: [tex]$0.50 - Profit per Bagel: $[/tex]0.75

Calculate the total profit for choice C:
[tex]\[ \text{Profit}_C = (500 \times 0.50) + (40 \times 0.75) \][/tex]

Break it down:
[tex]\[ 500 \times 0.50 = 250 \][/tex]
[tex]\[ 40 \times 0.75 = 30 \][/tex]
[tex]\[ \text{Profit}_C = 250 + 30 = 280 \][/tex]

Now, let's compare the total profits to determine which choice yields the largest profit.

- [tex]\(\text{Profit}_A = 352.5\)[/tex]
- [tex]\(\text{Profit}_B = 355\)[/tex]
- [tex]\(\text{Profit}_C = 280\)[/tex]

Among these, the maximum profit is $355. Therefore, Choice B yields the largest profit.