Select the best answer for the question.

12. Simplify [tex]2 a^2 b^3(4 a^2+3 a b^2-a b)[/tex]:

A. [tex]8 a^4 b^3 + 6 a^3 b^5 + 2 a^3 b^4[/tex]

B. [tex]8 a^4 b^5 + 3 a^3 b^5 - 2 a^3 b^4[/tex]

C. [tex]8 a^4 b^3 + 6 a^3 b^5 - 2 a^3 b^4[/tex]

D. [tex]8 a^4 b^5 + 3 a^3 b^5 + 2 a^3 b^4[/tex]



Answer :

To simplify the expression [tex]\(2 a^2 b^3 \left( 4 a^2 + 3 a b^2 - a b \right)\)[/tex], we need to perform the following steps:

1. Distribute the [tex]\(2 a^2 b^3\)[/tex] to each term inside the parentheses:

[tex]\[ 2 a^2 b^3 (4 a^2) + 2 a^2 b^3 (3 a b^2) - 2 a^2 b^3 (a b) \][/tex]

2. Multiply each term individually:

- For the first term [tex]\(2 a^2 b^3 \cdot 4 a^2\)[/tex]:

[tex]\[ 2 \cdot 4 \cdot a^2 \cdot a^2 \cdot b^3 = 8 a^4 b^3 \][/tex]

- For the second term [tex]\(2 a^2 b^3 \cdot 3 a b^2\)[/tex]:

[tex]\[ 2 \cdot 3 \cdot a^2 \cdot a \cdot b^3 \cdot b^2 = 6 a^3 b^5 \][/tex]

- For the third term [tex]\(2 a^2 b^3 \cdot (- a b)\)[/tex]:

[tex]\[ 2 \cdot (-1) \cdot a^2 \cdot a \cdot b^3 \cdot b = -2 a^3 b^4 \][/tex]

3. Combine all of these results:

[tex]\[ 8 a^4 b^3 + 6 a^3 b^5 - 2 a^3 b^4 \][/tex]

Now, comparing this simplified expression to the given options:

A. [tex]\(8 a^4 b^3 + 6 a^3 b^5 + 2 a^3 b^4\)[/tex]

B. [tex]\(8 a^4 b^5 + 3 a^3 b^5 - 2 a^3 b^4\)[/tex]

C. [tex]\(8 a^4 b^3 + 6 a^3 b^5 - 2 a^3 b^4\)[/tex]

D. [tex]\(8 a^4 b^5 + 3 a^3 b^5 + 2 a^3 b^4\)[/tex]

The correct option that matches the simplified expression is:

C. [tex]\(8 a^4 b^3 + 6 a^3 b^5 - 2 a^3 b^4\)[/tex]

Thus, the best answer for the question is option C.