Select the best answer for the question:

14. Simplify [tex]\left(x^2+16\right)\left(x^2-16\right) = ?[/tex]

A. [tex]x^4-256[/tex]
B. [tex]x^4+32[/tex]
C. [tex]x^4+256[/tex]
D. [tex]x^4-32[/tex]



Answer :

Certainly! Let's simplify the expression [tex]\(\left(x^2 + 16\right)\left(x^2 - 16\right)\)[/tex] step-by-step.

First, notice that we have a product of two binomials, [tex]\((x^2 + 16)\)[/tex] and [tex]\((x^2 - 16)\)[/tex]. This is in the form of [tex]\((a + b)(a - b)\)[/tex], which can be simplified using the difference of squares formula:

[tex]\[ (a + b)(a - b) = a^2 - b^2 \][/tex]

In our expression, [tex]\(a = x^2\)[/tex] and [tex]\(b = 16\)[/tex]. Applying the difference of squares formula:

[tex]\[ (x^2 + 16)(x^2 - 16) = (x^2)^2 - 16^2 \][/tex]

Now, calculating each part:

1. [tex]\((x^2)^2\)[/tex] simplifies to [tex]\(x^4\)[/tex]
2. [tex]\(16^2\)[/tex] simplifies to [tex]\(256\)[/tex]

Substituting these back into the equation:

[tex]\[ (x^2)^2 - 16^2 = x^4 - 256 \][/tex]

So, the simplified expression is:

[tex]\[ x^4 - 256 \][/tex]

Therefore, the best answer is:

A. [tex]\(x^4 - 256\)[/tex]