Select the best answer for the question.

15. Simplify [tex]\((2x + 3)(x - 4) =\)[/tex] ?

A. [tex]\(2x^2 + 5x + 12\)[/tex]

B. [tex]\(2x^2 - 5x - 12\)[/tex]

C. [tex]\(2x^2 - 5x + 12\)[/tex]

D. [tex]\(2x^2 + 5x - 12\)[/tex]



Answer :

Certainly! Let's simplify the given expression step by step.

Given the expression [tex]\((2x + 3)(x - 4)\)[/tex]:

1. Apply the Distributive Property (FOIL Method):
[tex]\[ (2x + 3)(x - 4) = 2x(x) + 2x(-4) + 3(x) + 3(-4) \][/tex]

2. Multiply each term:
[tex]\[ = 2x^2 - 8x + 3x - 12 \][/tex]

3. Combine like terms:
[tex]\[ = 2x^2 - 8x + 3x - 12 = 2x^2 - 5x - 12 \][/tex]

So, the simplified expression is [tex]\(2x^2 - 5x - 12\)[/tex].

Now, let's compare this result with the options provided:

A. [tex]\(2x^2 + 5x + 12\)[/tex]

B. [tex]\(2x^2 - 5x - 12\)[/tex]

C. [tex]\(2x^2 - 5x + 12\)[/tex]

D. [tex]\(2x^2 + 5x - 12\)[/tex]

The correct answer is option B: [tex]\(2x^2 - 5x - 12\)[/tex].