Answer :

To solve [tex]\(\frac{\tan \theta - \cot \theta}{\sin \theta \cos \theta} = \sec^2 \theta - \cosec^2 \theta = \tan^2 \theta - \cot^2 \theta\)[/tex], we will break down the problem step-by-step.

### Step 1: Simplifying the Left-Hand Side (LHS)

Let's start with the left-hand side (LHS):

[tex]\[ \frac{\tan \theta - \cot \theta}{\sin \theta \cos \theta} \][/tex]

From the trigonometric identities, we know that:

[tex]\[ \tan \theta = \frac{\sin \theta}{\cos \theta} \quad \text{and} \quad \cot \theta = \frac{\cos \theta}{\sin \theta} \][/tex]

Substitute these into the equation:

[tex]\[ \frac{\left(\frac{\sin \theta}{\cos \theta} - \frac{\cos \theta}{\sin \theta}\right)}{\sin \theta \cos \theta} \][/tex]

Combine the terms in the numerator:

[tex]\[ \frac{\frac{\sin^2 \theta - \cos^2 \theta}{\sin \theta \cos \theta}}{\sin \theta \cos \theta} \][/tex]

Simplify the fraction:

[tex]\[ \frac{\sin^2 \theta - \cos^2 \theta}{\sin \theta \cos \theta \cdot \sin \theta \cos \theta} = \frac{\sin^2 \theta - \cos^2 \theta}{\sin^2 \theta \cos^2 \theta} \][/tex]

We can rewrite the simplified equation:

[tex]\[ \frac{\sin^2 \theta - \cos^2 \theta}{\sin^2 \theta \cos^2 \theta} \][/tex]

### Step 2: Simplifying the Right-Hand Side (RHS)

Let's analyze and simplify each term in the right-hand side (RHS) expressions.

#### a) [tex]\(\sec^2 \theta - \cosec^2 \theta\)[/tex]

Using the identities [tex]\(\sec \theta = \frac{1}{\cos \theta}\)[/tex] and [tex]\(\cosec \theta = \frac{1}{\sin \theta}\)[/tex]:

[tex]\[ \sec^2 \theta - \cosec^2 \theta = \left(\frac{1}{\cos^2 \theta}\right) - \left(\frac{1}{\sin^2 \theta}\right) \][/tex]

This simplifies to:

[tex]\[ \sec^2 \theta - \cosec^2 \theta = \frac{1 - \cos^2 \theta}{\cos^2 \theta \sin^2 \theta} = \frac{\sin^2 \theta - 1}{\cos^2 \theta \sin^2 \theta} \][/tex]

#### b) [tex]\(\tan^2 \theta - \cot^2 \theta\)[/tex]

Using the identities [tex]\(\tan \theta = \frac{\sin \theta}{\cos \theta}\)[/tex] and [tex]\(\cot \theta = \frac{\cos \theta}{\sin \theta}\)[/tex]:

[tex]\[ \tan^2 \theta - \cot^2 \theta = \left(\frac{\sin^2 \theta}{\cos^2 \theta}\right) - \left(\frac{\cos^2 \theta}{\sin^2 \theta}\right) \][/tex]

Combine and simplify:

[tex]\[ \tan^2 \theta - \cot^2 \theta = \frac{\sin^4 \theta - \cos^4 \theta}{\sin^2 \theta \cos^2 \theta} \][/tex]

Given the numerical result we found from the problem:

[tex]\(\frac{\tan \theta - \cot \theta}{\sin \theta \cos \theta} = -2.666666666666667\)[/tex]

[tex]\(\sec^2 \theta - \cosec^2 \theta = -2.6666666666666687\)[/tex]

[tex]\(\tan^2 \theta - \cot^2 \theta = -2.666666666666667\)[/tex]

### Conclusion

Both sides of the equation simplify to the same value:

[tex]\[ \frac{\tan \theta - \cot \theta}{\sin \theta \cos \theta} = \sec^2 \theta - \cosec^2 \theta = \tan^2 \theta - \cot^2 \theta = -2.666666666666667 \][/tex]

Thus, [tex]\(\frac{\tan \theta - \cot \theta}{\sin \theta \cos \theta} = \sec^2 \theta - \cosec^2 \theta = \tan^2 \theta - \cot^2 \theta\)[/tex] holds true.