Solve for [tex]\( x \)[/tex].

[tex]\[ 3x = 6x - 2 \][/tex]

---

What is the value of [tex]\( \sin \left(\frac{7 \pi}{6}\right) \)[/tex]?

A. [tex]\( -\frac{\sqrt{3}}{2} \)[/tex]
B. [tex]\( \frac{1}{2} \)[/tex]
C. [tex]\( \frac{\sqrt{3}}{2} \)[/tex]
D. [tex]\( -\frac{1}{2} \)[/tex]



Answer :

To find the sine value of the angle [tex]\(\frac{7\pi}{6}\)[/tex], we can break down the problem step-by-step.

### Step-by-Step Solution:

1. Identify the Angle in Radians:
The angle given is [tex]\(\frac{7\pi}{6}\)[/tex] radians.

2. Convert the Angle to Degrees (Optional, for Better Understanding):
Although we don't need to convert radians to degrees to solve this, it might help understand the reference angle:
[tex]\[ \frac{7\pi}{6} \times \frac{180^\circ}{\pi} = 210^\circ \][/tex]
So, [tex]\(\frac{7\pi}{6}\)[/tex] radians is 210 degrees.

3. Determine the Reference Angle:
The reference angle for 210 degrees is:
[tex]\[ 210^\circ - 180^\circ = 30^\circ \implies \text{Reference angle is } 30^\circ \][/tex]

4. Sine Value of the Reference Angle:
We know from trigonometric values that [tex]\(\sin(30^\circ) = \frac{1}{2}\)[/tex].

5. Determine the Sign Based on the Quadrant:
The angle 210 degrees (or [tex]\(\frac{7\pi}{6}\)[/tex] radians) is in the third quadrant, where sine is negative.

6. Calculate the Sine Value:
Given the reference angle and that sine is negative in the third quadrant, the sine of [tex]\(\frac{7\pi}{6}\)[/tex] is:
[tex]\[ \sin\left(\frac{7\pi}{6}\right) = -\frac{1}{2} \][/tex]

Therefore, the answer is:
[tex]\[ \sin\left(\frac{7\pi}{6}\right) = -\frac{1}{2} \][/tex]

The correct option is:
[tex]\[ \boxed{D} \][/tex]