If [tex]x = \frac{20172016^2}{20172015^2 + 20172017^2 - 2}[/tex], then the value of [tex]x^{-11} - 2017[/tex] is:

(a) 31
(b) 30
(c) 32



Answer :

To find the value of [tex]\( x^{-11} - 2017 \)[/tex], where [tex]\( x = \frac{20172016^2}{20172015^2 + 20172017^2 - 2} \)[/tex], we will follow the following steps:

1. Compute [tex]\( x \)[/tex]:
[tex]\[ x = \frac{(20172016)^2}{(20172015)^2 + (20172017)^2 - 2} \][/tex]

2. Evaluate the exponentiation [tex]\( x^{-11} \)[/tex]:
[tex]\[ x^{-11} = \left( \frac{20172016^2}{20172015^2 + 20172017^2 - 2} \right)^{-11} \][/tex]

3. Subtract 2017 from the result of [tex]\( x^{-11} \)[/tex]:
[tex]\[ x^{-11} - 2017 \][/tex]

Performing these steps yields:

[tex]\[ x^{-11} - 2017 = 31 \][/tex]

Thus, the value of [tex]\( x^{-11} - 2017 \)[/tex] is [tex]\(\boxed{31}\)[/tex].