(ii) Which of the following equations can be formed using the solution [tex]z=\frac{3}{2}[/tex]?

(a) [tex]\frac{3z}{2} + 4 = \frac{25}{4}[/tex]

(b) [tex]-\frac{3z}{2} + 8 = \frac{41}{4}[/tex]

(c) [tex]6z + 15 = 21[/tex]

(d) [tex]12z - 5 = 4[/tex]



Answer :

Given [tex]\( z = \frac{3}{2} \)[/tex], we need to determine which of the following equations are satisfied:

(a) [tex]\( \frac{3z}{2} + 4 = \frac{25}{4} \)[/tex]
(b) [tex]\( -\frac{3z}{2} + 8 = \frac{41}{4} \)[/tex]
(c) [tex]\( 6z + 15 = 21 \)[/tex]
(d) [tex]\( 12z - 5 = 4 \)[/tex]

Let's check each equation step-by-step:

### Equation (a)
[tex]\[ \frac{3z}{2} + 4 = \frac{25}{4} \][/tex]

Substitute [tex]\( z = \frac{3}{2} \)[/tex]:

[tex]\[ \frac{3 \left(\frac{3}{2}\right)}{2} + 4 = \frac{25}{4} \][/tex]

Simplify the left-hand side:

[tex]\[ \frac{3 \cdot \frac{3}{2}}{2} = \frac{3 \cdot 3}{2 \cdot 2} = \frac{9}{4} \][/tex]

So,

[tex]\[ \frac{9}{4} + 4 = \frac{25}{4} \][/tex]

Convert 4 to a fraction with denominator 4:

[tex]\[ 4 = \frac{16}{4} \][/tex]

Therefore,

[tex]\[ \frac{9}{4} + \frac{16}{4} = \frac{25}{4} \][/tex]

This simplifies to:

[tex]\[ \frac{25}{4} = \frac{25}{4} \][/tex]

Therefore, equation (a) is satisfied.

### Equation (b)
[tex]\[ -\frac{3z}{2} + 8 = \frac{41}{4} \][/tex]

Substitute [tex]\( z = \frac{3}{2} \)[/tex]:

[tex]\[ -\frac{3 \left(\frac{3}{2}\right)}{2} + 8 = \frac{41}{4} \][/tex]

Simplify the left-hand side:

[tex]\[ -\frac{3 \cdot \frac{3}{2}}{2} = -\frac{9}{4} \][/tex]

So,

[tex]\[ -\frac{9}{4} + 8 = \frac{41}{4} \][/tex]

Convert 8 to a fraction with denominator 4:

[tex]\[ 8 = \frac{32}{4} \][/tex]

Therefore,

[tex]\[ -\frac{9}{4} + \frac{32}{4} = \frac{23}{4} \][/tex]

This simplifies to:

[tex]\[ \frac{23}{4} \ne \frac{41}{4} \][/tex]

Therefore, equation (b) is not satisfied.

### Equation (c)
[tex]\[ 6z + 15 = 21 \][/tex]

Substitute [tex]\( z = \frac{3}{2} \)[/tex]:

[tex]\[ 6 \left(\frac{3}{2}\right) + 15 = 21 \][/tex]

Simplify the left-hand side:

[tex]\[ 6 \cdot \frac{3}{2} = 9 \][/tex]

So,

[tex]\[ 9 + 15 = 21 \][/tex]

This simplifies to:

[tex]\[ 24 \ne 21 \][/tex]

Therefore, equation (c) is not satisfied.

### Equation (d)
[tex]\[ 12z - 5 = 4 \][/tex]

Substitute [tex]\( z = \frac{3}{2} \)[/tex]:

[tex]\[ 12 \left(\frac{3}{2}\right) - 5 = 4 \][/tex]

Simplify the left-hand side:

[tex]\[ 12 \cdot \frac{3}{2} = 18 \][/tex]

So,

[tex]\[ 18 - 5 = 4 \][/tex]

This simplifies to:

[tex]\[ 13 \ne 4 \][/tex]

Therefore, equation (d) is not satisfied.

### Conclusion

The only equation that is satisfied by [tex]\( z = \frac{3}{2} \)[/tex] is:

[tex]\[ (a) \frac{3z}{2} + 4 = \frac{25}{4} \][/tex]

Thus, the correct answer is [tex]\( (a) \)[/tex].