Answer :
Given [tex]\( z = \frac{3}{2} \)[/tex], we need to determine which of the following equations are satisfied:
(a) [tex]\( \frac{3z}{2} + 4 = \frac{25}{4} \)[/tex]
(b) [tex]\( -\frac{3z}{2} + 8 = \frac{41}{4} \)[/tex]
(c) [tex]\( 6z + 15 = 21 \)[/tex]
(d) [tex]\( 12z - 5 = 4 \)[/tex]
Let's check each equation step-by-step:
### Equation (a)
[tex]\[ \frac{3z}{2} + 4 = \frac{25}{4} \][/tex]
Substitute [tex]\( z = \frac{3}{2} \)[/tex]:
[tex]\[ \frac{3 \left(\frac{3}{2}\right)}{2} + 4 = \frac{25}{4} \][/tex]
Simplify the left-hand side:
[tex]\[ \frac{3 \cdot \frac{3}{2}}{2} = \frac{3 \cdot 3}{2 \cdot 2} = \frac{9}{4} \][/tex]
So,
[tex]\[ \frac{9}{4} + 4 = \frac{25}{4} \][/tex]
Convert 4 to a fraction with denominator 4:
[tex]\[ 4 = \frac{16}{4} \][/tex]
Therefore,
[tex]\[ \frac{9}{4} + \frac{16}{4} = \frac{25}{4} \][/tex]
This simplifies to:
[tex]\[ \frac{25}{4} = \frac{25}{4} \][/tex]
Therefore, equation (a) is satisfied.
### Equation (b)
[tex]\[ -\frac{3z}{2} + 8 = \frac{41}{4} \][/tex]
Substitute [tex]\( z = \frac{3}{2} \)[/tex]:
[tex]\[ -\frac{3 \left(\frac{3}{2}\right)}{2} + 8 = \frac{41}{4} \][/tex]
Simplify the left-hand side:
[tex]\[ -\frac{3 \cdot \frac{3}{2}}{2} = -\frac{9}{4} \][/tex]
So,
[tex]\[ -\frac{9}{4} + 8 = \frac{41}{4} \][/tex]
Convert 8 to a fraction with denominator 4:
[tex]\[ 8 = \frac{32}{4} \][/tex]
Therefore,
[tex]\[ -\frac{9}{4} + \frac{32}{4} = \frac{23}{4} \][/tex]
This simplifies to:
[tex]\[ \frac{23}{4} \ne \frac{41}{4} \][/tex]
Therefore, equation (b) is not satisfied.
### Equation (c)
[tex]\[ 6z + 15 = 21 \][/tex]
Substitute [tex]\( z = \frac{3}{2} \)[/tex]:
[tex]\[ 6 \left(\frac{3}{2}\right) + 15 = 21 \][/tex]
Simplify the left-hand side:
[tex]\[ 6 \cdot \frac{3}{2} = 9 \][/tex]
So,
[tex]\[ 9 + 15 = 21 \][/tex]
This simplifies to:
[tex]\[ 24 \ne 21 \][/tex]
Therefore, equation (c) is not satisfied.
### Equation (d)
[tex]\[ 12z - 5 = 4 \][/tex]
Substitute [tex]\( z = \frac{3}{2} \)[/tex]:
[tex]\[ 12 \left(\frac{3}{2}\right) - 5 = 4 \][/tex]
Simplify the left-hand side:
[tex]\[ 12 \cdot \frac{3}{2} = 18 \][/tex]
So,
[tex]\[ 18 - 5 = 4 \][/tex]
This simplifies to:
[tex]\[ 13 \ne 4 \][/tex]
Therefore, equation (d) is not satisfied.
### Conclusion
The only equation that is satisfied by [tex]\( z = \frac{3}{2} \)[/tex] is:
[tex]\[ (a) \frac{3z}{2} + 4 = \frac{25}{4} \][/tex]
Thus, the correct answer is [tex]\( (a) \)[/tex].
(a) [tex]\( \frac{3z}{2} + 4 = \frac{25}{4} \)[/tex]
(b) [tex]\( -\frac{3z}{2} + 8 = \frac{41}{4} \)[/tex]
(c) [tex]\( 6z + 15 = 21 \)[/tex]
(d) [tex]\( 12z - 5 = 4 \)[/tex]
Let's check each equation step-by-step:
### Equation (a)
[tex]\[ \frac{3z}{2} + 4 = \frac{25}{4} \][/tex]
Substitute [tex]\( z = \frac{3}{2} \)[/tex]:
[tex]\[ \frac{3 \left(\frac{3}{2}\right)}{2} + 4 = \frac{25}{4} \][/tex]
Simplify the left-hand side:
[tex]\[ \frac{3 \cdot \frac{3}{2}}{2} = \frac{3 \cdot 3}{2 \cdot 2} = \frac{9}{4} \][/tex]
So,
[tex]\[ \frac{9}{4} + 4 = \frac{25}{4} \][/tex]
Convert 4 to a fraction with denominator 4:
[tex]\[ 4 = \frac{16}{4} \][/tex]
Therefore,
[tex]\[ \frac{9}{4} + \frac{16}{4} = \frac{25}{4} \][/tex]
This simplifies to:
[tex]\[ \frac{25}{4} = \frac{25}{4} \][/tex]
Therefore, equation (a) is satisfied.
### Equation (b)
[tex]\[ -\frac{3z}{2} + 8 = \frac{41}{4} \][/tex]
Substitute [tex]\( z = \frac{3}{2} \)[/tex]:
[tex]\[ -\frac{3 \left(\frac{3}{2}\right)}{2} + 8 = \frac{41}{4} \][/tex]
Simplify the left-hand side:
[tex]\[ -\frac{3 \cdot \frac{3}{2}}{2} = -\frac{9}{4} \][/tex]
So,
[tex]\[ -\frac{9}{4} + 8 = \frac{41}{4} \][/tex]
Convert 8 to a fraction with denominator 4:
[tex]\[ 8 = \frac{32}{4} \][/tex]
Therefore,
[tex]\[ -\frac{9}{4} + \frac{32}{4} = \frac{23}{4} \][/tex]
This simplifies to:
[tex]\[ \frac{23}{4} \ne \frac{41}{4} \][/tex]
Therefore, equation (b) is not satisfied.
### Equation (c)
[tex]\[ 6z + 15 = 21 \][/tex]
Substitute [tex]\( z = \frac{3}{2} \)[/tex]:
[tex]\[ 6 \left(\frac{3}{2}\right) + 15 = 21 \][/tex]
Simplify the left-hand side:
[tex]\[ 6 \cdot \frac{3}{2} = 9 \][/tex]
So,
[tex]\[ 9 + 15 = 21 \][/tex]
This simplifies to:
[tex]\[ 24 \ne 21 \][/tex]
Therefore, equation (c) is not satisfied.
### Equation (d)
[tex]\[ 12z - 5 = 4 \][/tex]
Substitute [tex]\( z = \frac{3}{2} \)[/tex]:
[tex]\[ 12 \left(\frac{3}{2}\right) - 5 = 4 \][/tex]
Simplify the left-hand side:
[tex]\[ 12 \cdot \frac{3}{2} = 18 \][/tex]
So,
[tex]\[ 18 - 5 = 4 \][/tex]
This simplifies to:
[tex]\[ 13 \ne 4 \][/tex]
Therefore, equation (d) is not satisfied.
### Conclusion
The only equation that is satisfied by [tex]\( z = \frac{3}{2} \)[/tex] is:
[tex]\[ (a) \frac{3z}{2} + 4 = \frac{25}{4} \][/tex]
Thus, the correct answer is [tex]\( (a) \)[/tex].