Answer :

Certainly! Let's evaluate each expression step-by-step using appropriate identities.

### Part (i): Evaluate [tex]\((a^2 + b^2)^2\)[/tex]

To evaluate [tex]\((a^2 + b^2)^2\)[/tex], we can use the identity for the square of a binomial:

[tex]\[ (p + q)^2 = p^2 + 2pq + q^2 \][/tex]

In this case, let [tex]\(p = a^2\)[/tex] and [tex]\(q = b^2\)[/tex]. Substituting these into the identity, we get:

[tex]\[ (a^2 + b^2)^2 = (a^2)^2 + 2(a^2)(b^2) + (b^2)^2 \][/tex]

Now, simplifying each term:

[tex]\[ (a^2)^2 = a^4 \][/tex]

[tex]\[ 2(a^2)(b^2) = 2a^2b^2 \][/tex]

[tex]\[ (b^2)^2 = b^4 \][/tex]

Combining these results, we have:

[tex]\[ (a^2 + b^2)^2 = a^4 + 2a^2b^2 + b^4 \][/tex]

For specific values [tex]\(a = 2\)[/tex] and [tex]\(b = 3\)[/tex]:

[tex]\[ a^4 = 2^4 = 16 \][/tex]

[tex]\[ 2a^2b^2 = 2 \cdot 2^2 \cdot 3^2 = 2 \cdot 4 \cdot 9 = 72 \][/tex]

[tex]\[ b^4 = 3^4 = 81 \][/tex]

Adding these results together:

[tex]\[ 16 + 72 + 81 = 169 \][/tex]

So, the value of [tex]\((a^2 + b^2)^2\)[/tex] is [tex]\(\boxed{169}\)[/tex].

### Part (ii): Evaluate [tex]\((xy + 2z)^2\)[/tex]

To evaluate [tex]\((xy + 2z)^2\)[/tex], we can again use the identity for the square of a binomial:

[tex]\[ (p + q)^2 = p^2 + 2pq + q^2 \][/tex]

In this case, let [tex]\(p = xy\)[/tex] and [tex]\(q = 2z\)[/tex]. Substituting these into the identity, we get:

[tex]\[ (xy + 2z)^2 = (xy)^2 + 2(xy)(2z) + (2z)^2 \][/tex]

Now, simplifying each term:

[tex]\[ (xy)^2 = x^2 y^2 \][/tex]

[tex]\[ 2(xy)(2z) = 4xyz \][/tex]

[tex]\[ (2z)^2 = 4z^2 \][/tex]

Combining these results, we have:

[tex]\[ (xy + 2z)^2 = x^2 y^2 + 4xyz + 4z^2 \][/tex]

For specific values [tex]\(x = 1\)[/tex], [tex]\(y = 2\)[/tex], and [tex]\(z = 3\)[/tex]:

[tex]\[ x^2 y^2 = 1^2 \cdot 2^2 = 1 \cdot 4 = 4 \][/tex]

[tex]\[ 4xyz = 4 \cdot 1 \cdot 2 \cdot 3 = 24 \][/tex]

[tex]\[ 4z^2 = 4 \cdot 3^2 = 4 \cdot 9 = 36 \][/tex]

Adding these results together:

[tex]\[ 4 + 24 + 36 = 64 \][/tex]

So, the value of [tex]\((xy + 2z)^2\)[/tex] is [tex]\(\boxed{64}\)[/tex].