Observe the values of the digits in 481592.

We can add the values of the digits to get the number:

[tex]\[
\begin{array}{l}
481592 = 400000 + 80000 + 1000 + 500 + 90 + 2 \\
514879 = 500000 + 10000 + 4000 + 800 + 70 + 9 \\
1289756 = 1000000 + 200000 + 80000 + 9000 + 700 + 50 + 6
\end{array}
\][/tex]



Answer :

Sure, let's examine the process of breaking down the digits of each number into their place values where they contribute to the original number. This method allows us to understand the composition of the number in terms of its individual components.

Let's analyze each number separately.

1. 481592

First, write down each digit and its corresponding place value:

- The digit 4 in the hundred-thousands place is worth [tex]\( 4 \times 100000 = 400000 \)[/tex].
- The digit 8 in the ten-thousands place is worth [tex]\( 8 \times 10000 = 80000 \)[/tex].
- The digit 1 in the thousands place is worth [tex]\( 1 \times 1000 = 1000 \)[/tex].
- The digit 5 in the hundreds place is worth [tex]\( 5 \times 100 = 500 \)[/tex].
- The digit 9 in the tens place is worth [tex]\( 9 \times 10 = 90 \)[/tex].
- The digit 2 in the units place is worth [tex]\( 2 \times 1 = 2 \)[/tex].

Summing these values, we get:
[tex]\[ 400000 + 80000 + 1000 + 500 + 90 + 2 = 481592 \][/tex]

2. 514879

Similarly, decompose this number into place values:

- The digit 5 in the hundred-thousands place is worth [tex]\( 5 \times 100000 = 500000 \)[/tex].
- The digit 1 in the ten-thousands place is worth [tex]\( 1 \times 10000 = 10000 \)[/tex].
- The digit 4 in the thousands place is worth [tex]\( 4 \times 1000 = 4000 \)[/tex].
- The digit 8 in the hundreds place is worth [tex]\( 8 \times 100 = 800 \)[/tex].
- The digit 7 in the tens place is worth [tex]\( 7 \times 10 = 70 \)[/tex].
- The digit 9 in the units place is worth [tex]\( 9 \times 1 = 9 \)[/tex].

Summing these values, we get:
[tex]\[ 500000 + 10000 + 4000 + 800 + 70 + 9 = 514879 \][/tex]

3. 1289756

Finally, break down this number similarly:

- The digit 1 in the million place is worth [tex]\( 1 \times 1000000 = 1000000 \)[/tex].
- The digit 2 in the hundred-thousands place is worth [tex]\( 2 \times 100000 = 200000 \)[/tex].
- The digit 8 in the ten-thousands place is worth [tex]\( 8 \times 10000 = 80000 \)[/tex].
- The digit 9 in the thousands place is worth [tex]\( 9 \times 1000 = 9000 \)[/tex].
- The digit 7 in the hundreds place is worth [tex]\( 7 \times 100 = 700 \)[/tex].
- The digit 5 in the tens place is worth [tex]\( 5 \times 10 = 50 \)[/tex].
- The digit 6 in the units place is worth [tex]\( 6 \times 1 = 6 \)[/tex].

Summing these values, we get:
[tex]\[ 1000000 + 200000 + 80000 + 9000 + 700 + 50 + 6 = 1289756 \][/tex]

So, to summarize:

- [tex]\( 481592 = 400000 + 80000 + 1000 + 500 + 90 + 2 \)[/tex]
- [tex]\( 514879 = 500000 + 10000 + 4000 + 800 + 70 + 9 \)[/tex]
- [tex]\( 1289756 = 1000000 + 200000 + 80000 + 9000 + 700 + 50 + 6 \)[/tex]

These are the place values that add up to reconstruct the original numbers.