Solve for [tex]\( x \)[/tex].

[tex]\[ 3x = 6x - 2 \][/tex]

---

Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
[tex]\[ 2x(5x - 6) = \][/tex]
-----

Response:
Simplify the expression:

[tex]\[ 2x(5x - 6) = \][/tex]



Answer :

Sure, let's solve the expression [tex]\(2x(5x - 6)\)[/tex] step by step:

1. Distribute the [tex]\(2x\)[/tex] through the parentheses:

You need to multiply [tex]\(2x\)[/tex] by each term inside the parentheses [tex]\( (5x - 6) \)[/tex].

- First, multiply [tex]\(2x\)[/tex] by [tex]\(5x\)[/tex]:
[tex]\[ 2x \cdot 5x = 10x^2 \][/tex]

- Next, multiply [tex]\(2x\)[/tex] by [tex]\(-6\)[/tex]:
[tex]\[ 2x \cdot (-6) = -12x \][/tex]

2. Combine the results:

Now, add the results from the two multiplications together:
[tex]\[ 10x^2 - 12x \][/tex]

So, the simplified form of the expression [tex]\(2x(5x - 6)\)[/tex] is:
[tex]\[ 10x^2 - 12x \][/tex]

To summarize:
[tex]\[ 2x(5x - 6) = 10x^2 - 12x \][/tex]

This shows the detailed steps to distribute and simplify the given expression.