Answer :
Sure, let's solve the expression [tex]\(2x(5x - 6)\)[/tex] step by step:
1. Distribute the [tex]\(2x\)[/tex] through the parentheses:
You need to multiply [tex]\(2x\)[/tex] by each term inside the parentheses [tex]\( (5x - 6) \)[/tex].
- First, multiply [tex]\(2x\)[/tex] by [tex]\(5x\)[/tex]:
[tex]\[ 2x \cdot 5x = 10x^2 \][/tex]
- Next, multiply [tex]\(2x\)[/tex] by [tex]\(-6\)[/tex]:
[tex]\[ 2x \cdot (-6) = -12x \][/tex]
2. Combine the results:
Now, add the results from the two multiplications together:
[tex]\[ 10x^2 - 12x \][/tex]
So, the simplified form of the expression [tex]\(2x(5x - 6)\)[/tex] is:
[tex]\[ 10x^2 - 12x \][/tex]
To summarize:
[tex]\[ 2x(5x - 6) = 10x^2 - 12x \][/tex]
This shows the detailed steps to distribute and simplify the given expression.
1. Distribute the [tex]\(2x\)[/tex] through the parentheses:
You need to multiply [tex]\(2x\)[/tex] by each term inside the parentheses [tex]\( (5x - 6) \)[/tex].
- First, multiply [tex]\(2x\)[/tex] by [tex]\(5x\)[/tex]:
[tex]\[ 2x \cdot 5x = 10x^2 \][/tex]
- Next, multiply [tex]\(2x\)[/tex] by [tex]\(-6\)[/tex]:
[tex]\[ 2x \cdot (-6) = -12x \][/tex]
2. Combine the results:
Now, add the results from the two multiplications together:
[tex]\[ 10x^2 - 12x \][/tex]
So, the simplified form of the expression [tex]\(2x(5x - 6)\)[/tex] is:
[tex]\[ 10x^2 - 12x \][/tex]
To summarize:
[tex]\[ 2x(5x - 6) = 10x^2 - 12x \][/tex]
This shows the detailed steps to distribute and simplify the given expression.