1. What type of function is [tex]$B(x)$[/tex]: linear, quadratic, or exponential? Justify your answer and show calculations to support your conclusion.

[tex]\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{Years} \ (x) & \text{Batana} \ B(x) & \text{RATIOS} & \text{FIRST DIFFERENCES} & \text{SECOND DIFFERENCES} \\
\hline
0 & 2 & & & \\
\hline
1 & 6 & & & \\
\hline
2 & 18 & & & \\
\hline
3 & 54 & & & \\
\hline
4 & 162 & & & \\
\hline
5 & 486 & & & \\
\hline
\end{array}
\][/tex]



Answer :

To determine the type of function [tex]\( B(x) \)[/tex], whether it is linear, quadratic, or exponential, we will analyze the given data points across several criteria:

1. Ratios to check for exponential growth.
2. First differences to check for linearity.
3. Second differences to check for quadratic characteristics.

The given data points are:
[tex]\[ \begin{aligned} &\text{Years} \ (x): & 0 & 1 & 2 & 3 & 4 & 5 \\ & B(x): & 2 & 6 & 18 & 54 & 162 & 486 \\ \end{aligned} \][/tex]

### Step 1: Calculate Ratios

We calculate the ratios [tex]\(\frac{B(x+1)}{B(x)}\)[/tex]:

[tex]\[ \begin{aligned} &\frac{6}{2} = 3.0, \\ &\frac{18}{6} = 3.0, \\ &\frac{54}{18} = 3.0, \\ &\frac{162}{54} = 3.0, \\ &\frac{486}{162} = 3.0. \end{aligned} \][/tex]

The ratios are all consistent and equal to 3.0. This consistency in ratios is indicative of an exponential function.

### Step 2: Calculate First Differences

We calculate the first differences [tex]\( B(x+1) - B(x) \)[/tex]:

[tex]\[ \begin{aligned} &6 - 2 = 4, \\ &18 - 6 = 12, \\ &54 - 18 = 36, \\ &162 - 54 = 108, \\ &486 - 162 = 324. \end{aligned} \][/tex]

The first differences are:

[tex]\[ [4, 12, 36, 108, 324] \][/tex]

These differences are not constant, which means that the function is not linear.

### Step 3: Calculate Second Differences

We calculate the second differences by taking the differences of the first differences:

[tex]\[ \begin{aligned} &12 - 4 = 8, \\ &36 - 12 = 24, \\ &108 - 36 = 72, \\ &324 - 108 = 216. \end{aligned} \][/tex]

The second differences are:

[tex]\[ [8, 24, 72, 216] \][/tex]

These second differences are also not constant, indicating the function is not quadratic.

### Conclusion

Based on our calculations:

- The ratios [tex]\(\frac{B(x+1)}{B(x)}\)[/tex] are constant (3.0), suggesting an exponential function.
- The first differences are not constant, ruling out a linear function.
- The second differences are not constant, ruling out a quadratic function.

Thus, we conclude that [tex]\( B(x) \)[/tex] is an exponential function.

[tex]\[ \begin{array}{|r|r|r|r|r|} \hline \text{Years (x)} & \text{Batana } B(x) & \text{Ratios} & \text{First Differences} & \text{Second Differences} \\ \hline 0 & 2 & & & \\ \hline 1 & 6 & 3.0 & & \\ \hline 2 & 18 & 3.0 & 4 & \\ \hline 3 & 54 & 3.0 & 12 & 8 \\ \hline 4 & 162 & 3.0 & 36 & 24 \\ \hline 5 & 486 & 3.0 & 108 & 72 \\ \hline & & & 324 & 216 \\ \hline \end{array} \][/tex]