Solve for [tex]\( x \)[/tex]:

[tex]\[ 3x = 6x - 2 \][/tex]


Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
[tex]\[ y + 4 = -\frac{5}{2}(x + 3) \][/tex]
-----

Response:
[tex]\[ y + 4 = -\frac{5}{2}(x + 3) \][/tex]



Answer :

Sure! Let's solve the given equation step-by-step to find its slope and y-intercept.

1. Start with the given equation:
[tex]\[ y + 4 = -\frac{5}{2}(x + 3) \][/tex]

2. Distribute [tex]\(-\frac{5}{2}\)[/tex] to the terms inside the parentheses on the right-hand side:
[tex]\[ y + 4 = -\frac{5}{2} \cdot x + -\frac{5}{2} \cdot 3 \][/tex]

3. Simplify the right-hand side:
[tex]\[ y + 4 = -\frac{5}{2}x - \frac{15}{2} \][/tex]

4. Isolate [tex]\(y\)[/tex] by subtracting 4 from both sides of the equation:
[tex]\[ y = -\frac{5}{2}x - \frac{15}{2} - 4 \][/tex]

5. Combine the constant terms on the right-hand side. Convert 4 to a fraction with a common denominator:
[tex]\[ y = -\frac{5}{2}x - \frac{15}{2} - \frac{8}{2} \][/tex]

6. Add the fractions on the right-hand side:
[tex]\[ y = -\frac{5}{2}x - \frac{23}{2} \][/tex]

So, the equation is now in slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope and [tex]\(b\)[/tex] is the y-intercept.

- The slope [tex]\(m\)[/tex] is: [tex]\(-\frac{5}{2}\)[/tex]
- The y-intercept [tex]\(b\)[/tex] is: [tex]\(-\frac{23}{2}\)[/tex]

To summarize:
- The slope [tex]\(m\)[/tex] is [tex]\(-2.5\)[/tex]
- The y-intercept [tex]\(b\)[/tex] is [tex]\(-11.5\)[/tex]

Thus, the equation in slope-intercept form is:
[tex]\[ y = -2.5x - 11.5 \][/tex]