Problem 10:

Let [tex]$E(x)=\sum_{n=0}^{\infty} \frac{x^n}{n!}$[/tex], which converges for all [tex]$x$[/tex]. A power series [tex]$\sum_{n=0}^{\infty} c_n x^n$[/tex] can be found for [tex][tex]$\frac{E(x)}{1-x}$[/tex][/tex] using power series multiplication.

Find [tex]$c_0, c_1, c_2, c_3, c_4$[/tex] of this power series. In other words, calculate the constant term and the coefficients of [tex]$x, x^2, x^3$[/tex], and [tex][tex]$x^4$[/tex][/tex] in the power series for [tex]$\frac{E(x)}{1-x}$[/tex].



Answer :

To find the coefficients [tex]\( c_0, c_1, c_2, c_3, c_4 \)[/tex] of the power series [tex]\(\sum_{n=0}^{\infty} c_n x^n\)[/tex] for [tex]\(\frac{E(x)}{1-x}\)[/tex], we proceed as follows:

1. Define the power series [tex]\( E(x) \)[/tex]:
[tex]\[ E(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots \][/tex]

2. Define the power series for [tex]\( \frac{1}{1-x} \)[/tex], which is a geometric series:
[tex]\[ \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + x^4 + \cdots \][/tex]

3. Multiply the two power series:
[tex]\[ \frac{E(x)}{1-x} = \left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \right) \left(1 + x + x^2 + x^3 + \cdots \right) \][/tex]

4. Find the coefficients [tex]\( c_n \)[/tex] by multiplying the series term-by-term and collecting like powers of [tex]\( x \)[/tex]. Let's go through the terms one by one until [tex]\( x^4 \)[/tex]:

- Coefficient [tex]\( c_0 \)[/tex]:
[tex]\[ c_0 = 1 \cdot 1 = 1 \][/tex]

- Coefficient [tex]\( c_1 \)[/tex]:
[tex]\[ c_1 = 1 \cdot x + x \cdot 1 = 1 + 1 = 2 \][/tex]

- Coefficient [tex]\( c_2 \)[/tex]:
[tex]\[ c_2 = 1 \cdot x^2 + x \cdot x + \frac{x^2}{2!} \cdot 1 = 1 + 1 + \frac{1}{2} = 2.5 \][/tex]

- Coefficient [tex]\( c_3 \)[/tex]:
[tex]\[ c_3 = 1 \cdot x^3 + x \cdot x^2 + \frac{x^2}{2!} \cdot x + \frac{x^3}{3!} \cdot 1 = 1 + 1 + \frac{1}{2} + \frac{1}{6} = \frac{8}{3} \approx 2.6666666666666665 \][/tex]

- Coefficient [tex]\( c_4 \)[/tex]:
[tex]\[ c_4 = 1 \cdot x^4 + x \cdot x^3 + \frac{x^2}{2!} \cdot x^2 + \frac{x^3}{3!} \cdot x + \frac{x^4}{4!} \cdot 1 = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} = 2.7083 \][/tex]

Therefore, the coefficients are:
[tex]\[ c_0 = 1, \quad c_1 = 2, \quad c_2 = 2.5, \quad c_3 = \frac{8}{3} \approx 2.6666666666666665, \quad c_4 = 2.7083. \][/tex]

So, [tex]\( \frac{E(x)}{1-x} = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4 + \cdots \)[/tex] with the coefficients [tex]\( c_0, c_1, c_2, c_3, \)[/tex] and [tex]\( c_4 \)[/tex] as calculated above.