Answer :
Sure, let's solve the expression step by step.
We are given the expression:
[tex]\[ -12 + (-2) \times 3 - 40 \div (-8) \][/tex]
### Step 1: Solve the multiplication
First, we need to handle the multiplication:
[tex]\[ (-2) \times 3 \][/tex]
Multiplying these values, we get:
[tex]\[ (-2) \times 3 = -6 \][/tex]
### Step 2: Solve the division
Next, we perform the division:
[tex]\[ 40 \div (-8) \][/tex]
Dividing these values, we obtain:
[tex]\[ 40 \div (-8) = -5 \][/tex]
### Step 3: Substitute back into the original expression
Now, we can substitute these results back into the original expression:
[tex]\[ -12 + (-6) - (-5) \][/tex]
### Step 4: Simplify the expression
First, handle the addition and subtraction step by step:
[tex]\[ -12 + (-6) = -18 \][/tex]
Then:
[tex]\[ -18 - (-5) \][/tex]
Subtracting a negative is equivalent to adding the positive:
[tex]\[ -18 + 5 = -13 \][/tex]
### Final Result
Thus, the value of the expression is:
[tex]\[ -13 \][/tex]
So, the detailed steps lead us to the final answer of [tex]\(-13\)[/tex].
We are given the expression:
[tex]\[ -12 + (-2) \times 3 - 40 \div (-8) \][/tex]
### Step 1: Solve the multiplication
First, we need to handle the multiplication:
[tex]\[ (-2) \times 3 \][/tex]
Multiplying these values, we get:
[tex]\[ (-2) \times 3 = -6 \][/tex]
### Step 2: Solve the division
Next, we perform the division:
[tex]\[ 40 \div (-8) \][/tex]
Dividing these values, we obtain:
[tex]\[ 40 \div (-8) = -5 \][/tex]
### Step 3: Substitute back into the original expression
Now, we can substitute these results back into the original expression:
[tex]\[ -12 + (-6) - (-5) \][/tex]
### Step 4: Simplify the expression
First, handle the addition and subtraction step by step:
[tex]\[ -12 + (-6) = -18 \][/tex]
Then:
[tex]\[ -18 - (-5) \][/tex]
Subtracting a negative is equivalent to adding the positive:
[tex]\[ -18 + 5 = -13 \][/tex]
### Final Result
Thus, the value of the expression is:
[tex]\[ -13 \][/tex]
So, the detailed steps lead us to the final answer of [tex]\(-13\)[/tex].