Find an explicit formula for the arithmetic sequence 81, 54, 27, 0, ...

Note: The first term should be [tex]\( a(1) \)[/tex].

[tex]\[ a(n) = \][/tex]



Answer :

Sure, let's find an explicit formula for the arithmetic sequence 81, 54, 27, 0, ...

1. Identify the First Term ([tex]\(a_1\)[/tex]):
- The first term of the sequence is given as 81.

[tex]\[ a_1 = 81 \][/tex]

2. Determine the Common Difference ([tex]\(d\)[/tex]):
- To find the common difference, subtract the first term from the second term:

[tex]\[ d = 54 - 81 = -27 \][/tex]

3. Write the Formula for the [tex]\(n\)[/tex]-th Term:
- The general formula for the [tex]\(n\)[/tex]-th term of an arithmetic sequence is given by:

[tex]\[ a(n) = a_1 + (n - 1) \cdot d \][/tex]

4. Substitute the Known Values:
- Substitute [tex]\(a_1 = 81\)[/tex] and [tex]\(d = -27\)[/tex] into the formula:

[tex]\[ a(n) = 81 + (n - 1) \cdot (-27) \][/tex]

5. Simplify the Expression:
- Distribute the [tex]\(-27\)[/tex] in the formula:

[tex]\[ a(n) = 81 - 27(n - 1) \][/tex]
- Distribute and simplify further:

[tex]\[ a(n) = 81 - 27n + 27 \][/tex]
[tex]\[ a(n) = 108 - 27n \][/tex]

So, the explicit formula for the given arithmetic sequence is:

[tex]\[ a(n) = 108 - 27n \][/tex]

This formula allows you to find the [tex]\(n\)[/tex]-th term of the sequence by substituting [tex]\(n\)[/tex] into the formula.