Complete the equation describing how [tex]\(x\)[/tex] relates to [tex]\(y\)[/tex]:

[tex]\[
\begin{tabular}{c|c}
$x$ & $y$ \\
\hline 0 & 3 \\
1 & 5 \\
2 & 7 \\
3 & 9 \\
4 & 11 \\
5 & 13 \\
\end{tabular}
\][/tex]

When [tex]\(x\)[/tex] changes by 1, [tex]\(y\)[/tex] changes by 2.

When [tex]\(x\)[/tex] is 0, [tex]\(y\)[/tex] is 3.

[tex]\[
y = 2x + 3
\][/tex]



Answer :

Let's complete the equation that describes the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] based on the given data.

We have the following data points:

[tex]\[ \begin{array}{c|c} x & y \\ \hline 0 & 3 \\ 1 & 5 \\ 2 & 7 \\ 3 & 9 \\ 4 & 11 \\ 5 & 13 \\ \end{array} \][/tex]

We observe the following pattern:

1. When [tex]\( x \)[/tex] changes by 1, [tex]\( y \)[/tex] changes by 2.
2. When [tex]\( x \)[/tex] is 0, [tex]\( y \)[/tex] is 3.

### Step-by-Step Solution

Step 1: Find the slope (rate of change) of [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex]:
The slope [tex]\( m \)[/tex] is the change in [tex]\( y \)[/tex] divided by the change in [tex]\( x \)[/tex].

[tex]\[ \text{slope} = m = \frac{\Delta y}{\Delta x} \][/tex]

Given that when [tex]\( x \)[/tex] changes by 1, [tex]\( y \)[/tex] changes by 2:

[tex]\[ m = \frac{2}{1} = 2 \][/tex]

So, the slope [tex]\( m \)[/tex] is 2.

Step 2: Find the y-intercept:
The y-intercept [tex]\( b \)[/tex] is the value of [tex]\( y \)[/tex] when [tex]\( x \)[/tex] is 0. From the given data point (0, 3):

[tex]\[ b = 3 \][/tex]

Step 3: Write the equation:
Using the slope-intercept form of a linear equation [tex]\( y = mx + b \)[/tex], we can substitute the values of [tex]\( m \)[/tex] and [tex]\( b \)[/tex] we found:

[tex]\[ y = 2x + 3 \][/tex]

### Conclusion
The complete equation describing the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] is:

[tex]\[ y = 2x + 3 \][/tex]

This equation tells us that for each unit increase in [tex]\( x \)[/tex], [tex]\( y \)[/tex] increases by 2, and when [tex]\( x \)[/tex] is 0, [tex]\( y \)[/tex] is 3.