Complete the equation describing the data in the table:

[tex]\[
\begin{tabular}{r|l}
$x$ & $y$ \\
\hline
-1 & 5 \\
0 & 4 \\
1 & 3 \\
2 & 2 \\
3 & 1 \\
4 & 0 \\
\end{tabular}
\][/tex]

[tex]\[ y = [?] x + \square \][/tex]



Answer :

To determine the equation of the line that best fits the given data points, we can use the linear equation form [tex]\( y = ax + b \)[/tex], where [tex]\( a \)[/tex] is the slope of the line and [tex]\( b \)[/tex] is the y-intercept. Here is a detailed, step-by-step solution:

1. Determine the slope [tex]\( a \)[/tex]:
- The slope [tex]\( a \)[/tex] can be calculated using any two points from the given data set. We'll use the points [tex]\((0, 4)\)[/tex] and [tex]\((1, 3)\)[/tex].
- The formula for the slope between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ a = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
- Plugging in the values from the points [tex]\((0, 4)\)[/tex] and [tex]\((1, 3)\)[/tex]:
[tex]\[ a = \frac{3 - 4}{1 - 0} = \frac{-1}{1} = -1 \][/tex]

2. Determine the y-intercept [tex]\( b \)[/tex]:
- Substitute the slope [tex]\( a = -1 \)[/tex] back into the linear equation [tex]\( y = ax + b \)[/tex] using the point [tex]\((0, 4)\)[/tex].
- Since the point [tex]\((0, 4)\)[/tex] gives us the value of [tex]\( b \)[/tex] directly (as [tex]\( x = 0 \)[/tex]), we have:
[tex]\[ y = -1 \cdot 0 + b = 4 \implies b = 4 \][/tex]

3. Write the final equation:
- Now that we have both the slope [tex]\( a = -1 \)[/tex] and the y-intercept [tex]\( b = 4 \)[/tex], the equation of the line is:
[tex]\[ y = -1x + 4 \][/tex]
- In simplified form, this is:
[tex]\[ y = -x + 4 \][/tex]

Thus, the complete equation describing how the variable [tex]\( y \)[/tex] depends on [tex]\( x \)[/tex] is:

[tex]\[ y = -1x + 4 \][/tex]

So, the final answer to fill in the blanks is:

[tex]\[ y = -1 \cdot x + 4 \][/tex]
or more concisely,

[tex]\[ y = -x + 4 \][/tex]