Answer :
To find the zeros of the function [tex]\( g(x) = -3x^4(x+2)^3(x+4)^2 \)[/tex], we need to set [tex]\( g(x) = 0 \)[/tex] and solve for [tex]\( x \)[/tex].
### Step-by-step Solution:
1. Identify the factors of the function:
The function [tex]\( g(x) \)[/tex] is given as:
[tex]\[ g(x) = -3x^4(x+2)^3(x+4)^2 \][/tex]
Each factor must be set to zero and solved for [tex]\( x \)[/tex].
2. Set each factor to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ x^4 = 0 \][/tex]
Solving for [tex]\( x \)[/tex] gives:
[tex]\[ x = 0 \][/tex]
[tex]\[ (x+2)^3 = 0 \][/tex]
Solving for [tex]\( x \)[/tex] gives:
[tex]\[ x = -2 \][/tex]
[tex]\[ (x+4)^2 = 0 \][/tex]
Solving for [tex]\( x \)[/tex] gives:
[tex]\[ x = -4 \][/tex]
3. List the zeros:
The zeros of the function [tex]\( g(x) \)[/tex] are:
[tex]\[ 0, -2, -4 \][/tex]
### Answer for Part 1:
The zero(s) of [tex]\( g \)[/tex]:
[tex]\[ 0, -2, -4 \][/tex]
### Step-by-step Solution:
1. Identify the factors of the function:
The function [tex]\( g(x) \)[/tex] is given as:
[tex]\[ g(x) = -3x^4(x+2)^3(x+4)^2 \][/tex]
Each factor must be set to zero and solved for [tex]\( x \)[/tex].
2. Set each factor to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ x^4 = 0 \][/tex]
Solving for [tex]\( x \)[/tex] gives:
[tex]\[ x = 0 \][/tex]
[tex]\[ (x+2)^3 = 0 \][/tex]
Solving for [tex]\( x \)[/tex] gives:
[tex]\[ x = -2 \][/tex]
[tex]\[ (x+4)^2 = 0 \][/tex]
Solving for [tex]\( x \)[/tex] gives:
[tex]\[ x = -4 \][/tex]
3. List the zeros:
The zeros of the function [tex]\( g(x) \)[/tex] are:
[tex]\[ 0, -2, -4 \][/tex]
### Answer for Part 1:
The zero(s) of [tex]\( g \)[/tex]:
[tex]\[ 0, -2, -4 \][/tex]