Answer :

Sure! Let's solve the problem step-by-step to prove the given equation.

Given [tex]\( y = \sqrt{x} + \frac{1}{\sqrt{x}} \)[/tex], we need to prove that:

[tex]\[ 2x \frac{dy}{dx} + y = 2\sqrt{x}. \][/tex]

1. Find the derivative [tex]\(\frac{dy}{dx}\)[/tex]:

First, let's differentiate [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex].

[tex]\[ y = \sqrt{x} + \frac{1}{\sqrt{x}} \][/tex]

To differentiate [tex]\( y \)[/tex]:

[tex]\[ \frac{dy}{dx} = \frac{d}{dx} (\sqrt{x}) + \frac{d}{dx} \left(\frac{1}{\sqrt{x}}\right) \][/tex]

We know that:

[tex]\[ \frac{d}{dx} (\sqrt{x}) = \frac{1}{2\sqrt{x}} \][/tex]

and

[tex]\[ \frac{d}{dx} \left(\frac{1}{\sqrt{x}}\right) = \frac{d}{dx} (x^{-\frac{1}{2}}) = -\frac{1}{2} x^{-\frac{3}{2}} = -\frac{1}{2x^{\frac{3}{2}}} \][/tex]

Therefore:

[tex]\[ \frac{dy}{dx} = \frac{1}{2\sqrt{x}} - \frac{1}{2x^{\frac{3}{2}}} \][/tex]

2. Calculate [tex]\( 2x \frac{dy}{dx} \)[/tex]:

[tex]\[ 2x \frac{dy}{dx} = 2x \left(\frac{1}{2\sqrt{x}} - \frac{1}{2x^{\frac{3}{2}}}\right) \][/tex]

Distribute [tex]\( 2x \)[/tex]:

[tex]\[ 2x \frac{dy}{dx} = 2x \cdot \frac{1}{2\sqrt{x}} - 2x \cdot \frac{1}{2x^{\frac{3}{2}}} \][/tex]

Simplify each term:

[tex]\[ 2x \cdot \frac{1}{2\sqrt{x}} = \frac{2x}{2\sqrt{x}} = \frac{x}{\sqrt{x}} = \sqrt{x} \][/tex]

and

[tex]\[ 2x \cdot \frac{1}{2x^{\frac{3}{2}}} = \frac{2x}{2x^{\frac{3}{2}}} = \frac{x}{x^{\frac{3}{2}}} = \frac{1}{x^{\frac{1}{2}}} = \frac{1}{\sqrt{x}} \][/tex]

Hence:

[tex]\[ 2x \frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}} \][/tex]

3. Combine [tex]\( 2x \frac{dy}{dx} \)[/tex] and [tex]\( y \)[/tex]:

Recall [tex]\( y = \sqrt{x} + \frac{1}{\sqrt{x}} \)[/tex]. Then:

[tex]\[ 2x \frac{dy}{dx} + y = (\sqrt{x} - \frac{1}{\sqrt{x}}) + (\sqrt{x} + \frac{1}{\sqrt{x}}) \][/tex]

Notice that the terms [tex]\(- \frac{1}{\sqrt{x}} \)[/tex] and [tex]\(+ \frac{1}{\sqrt{x}}\)[/tex] cancel each other out, so we get:

[tex]\[ \sqrt{x} - \frac{1}{\sqrt{x}} + \sqrt{x} + \frac{1}{\sqrt{x}} = \sqrt{x} + \sqrt{x} = 2\sqrt{x} \][/tex]

Thus, we have proven that:

[tex]\[ 2x \frac{dy}{dx} + y = 2\sqrt{x} \][/tex]

This completes the proof.