Given [tex]g(x) = 6x^4 - 2x^3 + 3x^2 - 2[/tex]

Part 1 of 2
(a) Evaluate [tex]g(2)[/tex].

[tex]g(2) =[/tex] [tex]\square[/tex]

Part 2 of 2
(b) Determine the remainder when [tex]g(x)[/tex] is divided by [tex](x-2)[/tex].

The remainder is [tex]\square[/tex].



Answer :

Let's go through each part step-by-step.

Part 1: Evaluate [tex]\( g(2) \)[/tex]

Given the function:
[tex]\[ g(x) = 6x^4 - 2x^3 + 3x^2 - 2 \][/tex]

To evaluate [tex]\( g(2) \)[/tex], we need to substitute [tex]\( x = 2 \)[/tex] into the function:

[tex]\[ g(2) = 6(2)^4 - 2(2)^3 + 3(2)^2 - 2 \][/tex]
[tex]\[ g(2) = 6(16) - 2(8) + 3(4) - 2 \][/tex]
[tex]\[ g(2) = 96 - 16 + 12 - 2 \][/tex]
[tex]\[ g(2) = 90 \][/tex]

So,

[tex]\[ g(2) = 90 \][/tex]

Part 2: Determine the remainder when [tex]\( g(x) \)[/tex] is divided by [tex]\( (x-2) \)[/tex]

To find the remainder when [tex]\( g(x) \)[/tex] is divided by [tex]\( (x-2) \)[/tex], we can use the Remainder Theorem. According to the Remainder Theorem, the remainder of the division of a polynomial [tex]\( g(x) \)[/tex] by [tex]\( (x-a) \)[/tex] is [tex]\( g(a) \)[/tex].

In this case, for [tex]\( (x-2) \)[/tex], [tex]\( a = 2 \)[/tex]. Therefore, the remainder when [tex]\( g(x) \)[/tex] is divided by [tex]\( (x-2) \)[/tex] is [tex]\( g(2) \)[/tex].

We have already calculated [tex]\( g(2) \)[/tex] in Part 1:

[tex]\[ g(2) = 90 \][/tex]

So, the remainder when [tex]\( g(x) \)[/tex] is divided by [tex]\( (x-2) \)[/tex] is:

[tex]\[ \text{The remainder is } 90 \][/tex]

To summarize:

Part 1:
[tex]\[ g(2) = 90 \][/tex]

Part 2:
[tex]\[ \text{The remainder is } 90 \][/tex]