Answer :

To verify and simplify the given trigonometric equation:

[tex]\[ \sin \theta \cdot \cot \theta + \sin \theta \cdot \operatorname{cosec} \theta = 1 + \cos \theta \][/tex]

Let's break it down step by step.

1. Express cotangent and cosecant in terms of sine and cosine:

- [tex]\( \cot \theta = \frac{\cos \theta}{\sin \theta} \)[/tex]
- [tex]\( \operatorname{cosec} \theta = \frac{1}{\sin \theta} \)[/tex]

2. Substitute these identities into the left-hand side (LHS) of the equation:

[tex]\[ \sin \theta \cdot \cot \theta + \sin \theta \cdot \operatorname{cosec} \theta = \sin \theta \cdot \frac{\cos \theta}{\sin \theta} + \sin \theta \cdot \frac{1}{\sin \theta} \][/tex]

3. Simplify the expressions:

- The first term in the LHS simplifies as follows:
[tex]\[ \sin \theta \cdot \frac{\cos \theta}{\sin \theta} = \cos \theta \][/tex]

- The second term in the LHS simplifies as follows:
[tex]\[ \sin \theta \cdot \frac{1}{\sin \theta} = 1 \][/tex]

4. Combine the simplified terms:

[tex]\[ \cos \theta + 1 \][/tex]

Now, the simplified left-hand side (LHS) is:
[tex]\[ \cos \theta + 1 \][/tex]

We see that both the simplified LHS and the right-hand side (RHS) are:
[tex]\[ 1 + \cos \theta \][/tex]

Therefore:
[tex]\[ \cos \theta + 1 = 1 + \cos \theta \][/tex]

Thus, the equality holds true, verifying the given trigonometric equation:
[tex]\[ \sin \theta \cdot \cot \theta + \sin \theta \cdot \operatorname{cosec} \theta = 1 + \cos \theta \][/tex]