Sketch the function:
[tex]\[ h(x) = -x^4 + 10x^2 - 9 \][/tex]

Part 1 of 4:
The end behavior of the function is down [tex]\(\square\)[/tex] to the left and down [tex]\(\square\)[/tex] to the right.

Part 2 of 4:
Find the [tex]\(y\)[/tex]-intercept(s). If there is more than one answer, separate them with commas. Select "None" if applicable.
The [tex]\(y\)[/tex]-Intercept(s): [tex]\(\square\)[/tex] [tex]\(-9\)[/tex]

Part 3 of 4:
Find the real zero(s) of the function. If there is more than one zero, separate them with commas. Select "None" if applicable.
The real zero(s) of the function: [tex]\(\square\)[/tex]

Part 4 of 4:
Determine the turning points of the function and their nature (local maxima or minima).



Answer :

Let's go through the solution for the given function step-by-step.

Function:
[tex]\[ h(x) = -x^4 + 10x^2 - 9 \][/tex]

### Part 1 of 4: End Behavior

To determine the end behavior of the function, we consider the leading term of the polynomial, which is [tex]\(-x^4\)[/tex].

- For [tex]\( x \to \infty \)[/tex]: The term [tex]\(-x^4\)[/tex] will dominate, and since it is negative, [tex]\( h(x) \)[/tex] will approach [tex]\(-\infty \)[/tex].

- For [tex]\( x \to -\infty \)[/tex]: Similarly, [tex]\(-x^4\)[/tex] will again dominate, and [tex]\( h(x) \)[/tex] will approach [tex]\(-\infty \)[/tex].

Thus, the end behavior is:

The end behavior of the function is down to the left and down to the right.

### Part 2 of 4: Finding the [tex]\( y \)[/tex]-Intercept

A [tex]\( y \)[/tex]-intercept occurs where [tex]\( x = 0 \)[/tex].

Substitute [tex]\( x = 0 \)[/tex] into [tex]\( h(x) \)[/tex]:

[tex]\[ h(0) = -0^4 + 10 \cdot 0^2 - 9 = -9 \][/tex]

Thus, the [tex]\( y \)[/tex]-intercept is:
[tex]\[ \boxed{-9} \][/tex]

### Part 3 of 4: Finding the Real Zeros

The real zeros of the function are the values of [tex]\( x \)[/tex] where [tex]\( h(x) = 0 \)[/tex].

Solve:
[tex]\[ -x^4 + 10x^2 - 9 = 0 \][/tex]

The real zeros of this polynomial equation are:
[tex]\[ \boxed{-3, -1, 1, 3} \][/tex]