Choose the correct simplification of [tex]\frac{f^9 h^{23}}{f^3 h^{17}}[/tex].

A. [tex]\frac{1}{f^{12} h^6}[/tex]

B. [tex]\frac{1}{f^6 h^6}[/tex]

C. [tex]f^6 h^6[/tex]

D. [tex]f^{12} h^6[/tex]



Answer :

The given expression is:

[tex]\[ \frac{f^9 h^{23}}{f^3 h^{17}} \][/tex]

To simplify this, we need to apply the properties of exponents. Specifically, we will use the property that [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex].

Start by simplifying the exponent for [tex]\(f\)[/tex]:

[tex]\[ \frac{f^9}{f^3} = f^{9-3} = f^6 \][/tex]

Next, simplify the exponent for [tex]\(h\)[/tex]:

[tex]\[ \frac{h^{23}}{h^{17}} = h^{23-17} = h^6 \][/tex]

Putting it all together, we get:

[tex]\[ \frac{f^9 h^{23}}{f^3 h^{17}} = f^6 h^6 \][/tex]

Therefore, the correct simplification of [tex]\(\frac{f^9 h^{23}}{f^3 h^{17}}\)[/tex] is:

[tex]\[ f^6 h^6 \][/tex]

So the correct answer is:

[tex]\[ f^6 h^6 \][/tex]